Automated measurement and
green optimizations for software

SCI, Blue Angel for Software, Cl / CD

& GREEN CODING;

Your workshop facilitators

* Arne - Green Coding Solutions </>
* Didi - Green Coding Solutions CO DI N G;
* Michelle - Green Coding Solutions

* Aydin - bluehands

=22 bluehands

()=>SoftwareEntwicklung()

</> CODING;

Our entry question
What is the goal of this workshop?

& GREEN CODING;

We want to make software sustainable

Through technical means - Measurement, Automation, Optimization

* In this workshop we want to
e share successful experiences and techniques
e share current struggles and hurdles
* pbrainstorm new ideas and approaches
 To get the workshop started we will present
 Our approach for an open source automated measurement system

* Current possible routes for certificates / standards

& GREEN CODING;

We want to make software sustainable

Our definition of a sustainable software and our approach

e A sustainable software knows about it's energy and CO2 emission
* A sustainable software is constantly monitored and optimized for savings

* A sustainable software uses the least amount of resources for a given task
(compared with similar applications)

A sustainable software is lean and does combat software bloat

 => Be sure to bring your view of a "sustainable software" in later!

& GREEN CODING;

Our follow-up question

What technical parts do we need to get to a sustainable
software?

& GREEN CODING;

Let's start with some requirements

What are our goals and what do we need to achieve them

« Measurement: We want to look at software and determine it's energy and
CO2 consumption

 Reproducibility: We want to quantity changes and thus runs must be
reproducible and have low StdDev.

* Optimization: We want to make changes and compare their effect

* DevOps / CI/CD integration: \We want to look at changes over time as
Incremental changes might be negligable

 Standards: We need standards that the measurements output to execute on
all of the above - Actually ... this is the first!

& GREEN CODING;

Stage #1

Standards

& GREEN CODING;

Standards - Part #1: SCI

Green Software Foundation's SCI

SCI=(E*I)+ MperR
* (E) - Energy consumption (kilowatt hours) for different components:
 Ex. CPU/GPUs, Data storage, Memory, Network
* () - Emissions factors
* (M) - Embodied emissions
 EX. data for servers, mobile devices and laptops

* (R) - Unit of work / use case

& GREEN CODING;

Green Software Foundation's SCI

By using standardised or at least MariaDB
identical Benchmarks software Foundation
becomes comparable through the SCI

 \WWhat we want is typically multiple
SCls for one software

PostgreSQL MariaDB

 Example Grafana

BADGES BADGES

° C ase 1 | m pO rt| N g d at a Energy Cost | 58.93 ki via PSU (AC) Energy Cost | 59.55 kJ via PSU (AC)

Energy Cost | 20.59 kJ via RAPL Energy Cost | 21.82 kJ via RAPL

SCI = 29.46 mgCO2e/TPC-C SQL-op SCI = 163.92 mgCO2e/TPC-C SQL-op

o Case #2: Displaying 5 graphs

[Show measurements [/ Show measurements

e Case #3: Making aggregation

/> CODING;

Standards - Part #2: Blue Angel

Blue Angel for Software by Umweltbundesamt

SCI=(E*I) + MperR
* (E) - Energy consumption (kilowatt hours) for different components:
 Ex. CPU/GPUs, Data storage, Memory, Network
* () - Emissions factors
* (M) - Embodied emissions
 EX. data for servers, mobile devices and laptops

* (R) - Unit of work / use case

& GREEN CODING;

Ressource- and energy-efficient software products (DE-UZ 215)

e Goals:

« Reduce hardware obsolescence ood for me.

ood for the environment.

* |ncrease transparency about software
energy consumption

* |ncrease user autonomy

Umwelt
Bundesamt

* |ncrease modularity and software re-use

</> CODING;

12

Ressource- and energy-efficient software products (DE-UZ 215)

 Requirements:

o Specification of intended use-case(s)

 Measurement incl. utilization, energy etc.

e Formal declaration of no advertisments,
security updates, etc.

e Must run on older hardware

* Reference system or

* OS Version compatibility
., </> CODING;

Environmental management

GREENHOUSE
GAS PROTOCOL

e |SO 14000 familiy is focused on
ife cycle assessment

* |SO 14067 provides framework of looking
iInto software as phases

 GHG protocol provides the execution standard

 Result is a life-cycle-assessment
for a digital product.
Methodology has international accreditation

 => Talk also to our speaker Moritz Bolter for experiences!

/> CODING;

Stage #2

Infrastructure reproducibility

& GREEN CODING;

15

Reproducability - Orchestration

Using infrastructure files and git versioning

compose.ymi o

services:

e Container Files

- -gcb-wordpress-apache:

...-build:

e Docker Files context: - .
------ dockerfile: -Dockerfile-wordpress

e Kubernetes Filescontainer_name: - gcb-wordpress-apache
.- - -1mage: -gcb_wordpress_apache
. .+ «poOrts:

 |mpact Framework b oa7s 087

_ _ _restart: -always
» \ersioning of all resources and filesenvironment:

integrated with Github repository ... WORDPRESS_DB_HOST=gcb-wordpress-mariadb

.« - -depends_on:

.-+ . .--gcb-wordpress-mariadb

& GREEN CODING;

Reproducability

Orchestrating - Tricky topic!

» Orchestrating docker containers
* Orchestrating Kubernetes k3s for smaller setups in deeper docker container
* Orchestrating full K8s with network plane in internal cluster (Not implemented!)

 => \We have seen this very unuseful for actual software optimizations. It is
nice for reporting. But not for optimizations as normal observability does
give no insights about actions on the system

* => Share your insights!

 How to handle external networking? Mirror resources locally? Spoof?

& GREEN CODING;

Reproducability

Alternatives to orchestration - System auto discovery

 We have seen this from softwares like Kepler

e We call it: Monitor mode

* Difference to Kepler: Triggers to start / end a measurement frame

* This allows to have reproducible measurements even in live systems

* => Do you think of any other relevant resources for modern systems? Put it
on a note later!

& GREEN CODING;

Going through all phases of the Blue Angel for Software

name Nextcloud Base (mod_php-SQLite-Chromium)
uri https://github.com/green-coding-solutions/nextcloud-docker
commit_hash e4246c5e11bbad808f3e71c4eb120244328b63c7

filename energy-tests/usage_scenario-sqlite-event-chromium.ym|

» Click here for more data ...

Baseline © Installation @ Boot © idle © Runtime @ Remove ©

Runtime can contain multiple flows. By default all runtime flows are aggregated. Please select a separate flow If needed.

All Flows Install Nextcloud Login and create event

Thinking of software in phases. It adheres to upcoming standards AND It will come in handy later!

/> CODING;

Orchestration - Open problems

When looking at cloud architectures for instance

o Keep in mind that optimization can only happen in domains you control or can
benchmark

 Even cloud applications can be effectively optimized with slight changes.
 Replace with equivalents (has bias, but will behave comparable)

 Be mindful of what needs to part for minimal use case to keep system error
influence low.

« Example ->

& GREEN CODING;

Rework this to be a
simple curl driver

Frontend

Replace with
PostgreSQL

Amazon Aurora

AP| Gateway

Backend
services

Log entral service A sendce hhatiens

BB

v Share servic

B

Fargate

Simple storage
Service S3

Can be excluded.

~ Fill DB with demo

External services

L

snyk

QO
new relic

A\ SENTRY

stripe

C)

GitHub

..&-'&|d.

How to handle
external services?

CODING;

Stage #3

Measurement

& GREEN CODING;

22

There is so much to measure. How to select?

We opted for a modular reporter architecture with sane defaults

CPU Energy (Package) via RAPL - Package_0 @
Run Trend | -11.98 mJ] per dav

Network Transmission via Formula - [FORMULA] @

SCI via formula - [SYSTEM] 6

/> CODING;

Maintaining measurement accuracy

 Temperature Control, Resource utilization control

e Off-the shelf OS with timers removed

CPU Energy (Package) via RAPL - Package_0 ©

-(_= Moving Average (5) Stddev

Uniit: [mJ] D tl Q

25,000,000

StdDev: 0.61 % AVG:

52 19851377.9:

Control workloads every 6h - StdDev < 1% between measurements

Running System Checks

Checking db online
Checking single energy scope machine provider : OK
Checking tmpfs mount

Checking < 5% CPU utilization

: OK

: OK
: WARN (Your system

seems to be busy. Utilization 1s above 5%. Consider terminating
some processes for a more stable measurement.)

Checking
Checking
Checking
Checking
Checking
Checking

single energy scope machine provider
tmpfs mount for low filesystem latency : OK

1GB free hdd space
docker daemon
running containers
current temperature”

: OK
: OK
: OK
: OK

Guard clauses and sanity checks

</>

CODING;

Measurement-Reproducability

Running test workloads and setting best practices

List of best practices 6. Always check STDDEV 12. Mount your /tmp
1. Never compare
between machines to /. Design representative on [/ tmpfs
judge your software Standard Usage Scenarios loaqi £
2. An application should 13 Turn ogglng O
NEVER come to the 8. Pin your dependencies
bounds of its resources 14. Use ——dOC ke r—
T 9. Use temperature control prune
want fo fest must run at and validate measurement
least twice as long as the
minimal resolution std.dev. 15. Use non Sfandard
o VLD L 10. Trigger test remotely sampling intervals and
your disk load should not ’) i
go over 50% or keep system inactive avoid undersampling
5. Limit amount and
resolution of Metric 11. Your system should not 16. SYSiem Check
Providers to what you overheat
absolutely need Thl'eSthId

* Not be read on this slide! But it is a long list and growing ... Contribute!

* https://docs.green-coding.io/docs/measuring/best-practices/

& GREEN CODING;

omparing between Machines, Between repositories, Between Runs ...

Baseline @ Installation @ Runtime @ Remove @

Runtime can contain multiple flows. By default all runtime flows are aggregated. Please select a separate flow if needed.

All Flows Check Website

Single Phase Data

Energy metrics General component distribution
@ Commit: b2604ad49dceee7adedbdb918d07e2ef65c83bec Commit: 34799ec75197282d2f13ca728e353821d5{7732b @ Commit: b2604ad49dceee7adedb4b918d07e2ef65c83bec Commit: 34799ec75197282d2f13ca728e353821d5f7732b

Unit: [mJ]
1,000,000

800,000
600,000
400,000

200,000

Key metrics

0-12.96 % ®+013% B -12.80 % = -0.24 %

(Diff. in %) (2] (Diff. in %) mcp @ (Diff. in %) mcp © (Diff. in %) via Formula @

Machine CO; (usage) [ug] Network CO2 [ug] Machine CO; (manufacturing) [ug] SCI [ugCO2e/page request]

0 -12.80 % 0-0.24% 0-12.96 % 0-12.87 %

(Diff. in %) via Formula @ (Diff. in %) via Formula @ (Diff. in %) via Formula @ (Diff. in %) via Formula @

» Click here for detailed metrics ...

/> CODING;

Behaviour of software over time

CPU Energy (Package) via RAPL - Package_0 ©

=(_= Moving Average (5) Stddev

Unit: [mJ]
1,000,000

CPU Energy (Package)

800,000 Run Trend

| StdDev: 4.66 % Showing regression trend
AL Tl N AV i AVG:
% NN M ~ m' 1 . adfeAillil R > 685932.065:
600,000 I

See changes over time with moving average

/> CODING;

Stage #4

Optimizations

& GREEN CODING;

28

Optimizations

Split into four technical domains of optimizations

 Part #1: Algorithmical observability based optimizations
* Using metrics that the OS already provides like CPU%, Memory, time etc.
* Part #2: Algorithmical profiling based optimizations
* Using PMUs or deep profiling like IPC, Energy, access-times etc.
 Part #3: Changes over time
 Part #4: Targeted Code quality / review based optimizations through Al

* |dentifying code quality of specific parts of the application

& GREEN CODING;

Total Phases Data
Total energy consumption

@ Machine Energy - e4246¢c5e11bbad808f3e71c4eb120244328b63c7

Unit: [mJ]
5,000,000

4,000,000

3,000,000
2,000,000
1,000,000
e m I

/ / Log;
[BASEL gy [80077 [DLg; [RUNT,ME] Nstayy NeXfC/oUd °gin gpy cres [REMOVE]
e

}
[NSTALLA T/OI\/
/ Svent

Boot and Build compared to Runtime is already low

Total Phases Data
Total energy consumption

@ Machine Energy - d532caf57df30310dcf2328a688b46297792d130

Unit: [mJ]
4,000,000

3,000,000

2,000,000

1,000,000

</> -
Boot compared to runtime very bad. Problematic in FAAS and CI/CD cases where caching is possible CODI NG)

Algorithmical observability based optimizations

 Once we orchestrate the application, we can tune it's resource consumption
behaviour

Docker container boot time & Docker

The container takes very long to become usable ~ 456s. Containers are meant to be started and killed quite fast.

i
Cpu container resource allocation & Docker

Container 'app’' is maybe overprovisioned. CPU utilization was '2%'. Max was '31%".

B

Example from Green Metrics Tool for Container Boot and CPU resouce metrics

/> CODING;

Optimizations - Part #1

Algorithmical observability based optimizations

* We can determine over-provisioning by testing with lower limits and
comparing results

* \WWe can determine boot vs. runtime duration because we know an average
request length (FAAS)

 We can look at image sizes, image layer architecture that breaks caching

 And many more from best practice lists like the Green Software Foundation,
Digital Sustainability Center and many more ...

& GREEN CODING;

32

Algorithmical profiling based optimizations

* We need to instrument an application by capturing tracepoints, patching the runtime,
polling PMUs etc. to make this work.

* Also we must change characteristics of the OS and see how the application behaves

Low IPC count

The ipc count is 1. This is a sign that you are not using all features of the processor.

High page faults B3 memory

Your system is experiencing a lot of page faults. See documentation for a detailed description on how to maybe fix this.

* But the benefits are high! In example: Utilizing processor in full can bring 8x improvement

</> CODING;

33

Changes over time

An important domain of Green Coding is also fighting software bloat

Container Image Size via docker_agent - [system] @

=(_= Moving Average (5) Stddev

Unit: [MB]
StdDev: 12.08 %

Docker image size between different releases of a software

</> CODING;

34

Changes over time

General Measurement Badges Machine Usage Scenario Logs Network Optimizations n

Container Image Size growing 2 omtcore [l

Since your last run the container image size has increased by 20%. To combat software bloat every increase in resource consumption should be engaged with
efficiency measures. Try pruning your image or re-running optimization with 'atime-full' option to auto detect unused files.

Network traffic size increased 4 GMT core m

Since your last run your container pulled 35.25 MB more data (66.21 MB in total). 22.10 MB of the pulled data was already known from a previous run. Try pulling this

data only once during image build if possible

Network traffic duplicated 2 omtcore (d

10.01 MB was pulled multiple times during the benchmark. If possible try to cache data and / or reduce polling frequency. If possible move to a socket based push
connection instead of using polling for status.

Example for intercepted and analysed network traffic

</> CODING;

35

Al Optimizations - What everyone wants

Code

</> CODING;

36

Al Optimizations - What everyone wants

Puasel PHaseZ PHASES

(,i()“('(’r ?]’r()ﬁ[
HROacrpants
' a

Don't we know this from the Simpsons already? </> CO DI N G ;

37

Optimizations - Part #4

Al Optimizations - This doesn’t really work that well

* Al models no understanding of “green”

* Al models can not consume large complex projects
« Performance Engineering = Green Coding

 Modern systems use loads of libraries and functionalities that change
depending on the system. Some operations great on X86 but really bad on

ARM

 Normally ends up being Lint++

& GREEN CODING;

38

Al Optimizations - What we are working on - WIP

Feedback

e

Measure code Retrain model to Edit code Measure code
understand what energy

consumption is

Problem: You need a lot of compute

</> CODING;

39

Run Data

General Measurement Badges Machine Usage Scenario Logs Network Optimizations n Al

B test/functions.py:element_in_list »

E test/functions.py:run_matrices *»

test/functions.py:list_for_find ?*
test/functions.py:swap_elements ?
test/functions.py:generate_random_list *
test/functions.py:string_concat *
test/functions.py:multiply *
test/functions.py:factorial *
test/functions.py:swap *

m test/functions.py:even_odd

m test/functions.py:add_matrices *

m test/functions.py:count_evens »

CODING;

40

test/functions.py:list_for_find ¥

[l You code

def list_for_find(length):
randome_elements = random.sample(range(MIN, MAX), 100)
list_seq = list(generate_random_list(length))
counter = 0
for ele in randome_elements:
if ele in list_seq:
counter +=1
return counter

§) chatcpT

To properly assess the performance and optimization potential of the provided piece of code, we would need to consider several factors, such as code efficiency, use of
data structures, algorithmic complexity, code readability, and maintainability. As the code snippet is incomplete and lacks context (e.g., definitions of "MIN", "MAX", and
‘generate_random_list "), | can only provide a general assessment based on the visible portion.

Here's a brief analysis:

1. **Algorithm Efficiency**: The "if ele in list_seq" operation is O(n) for a list, where n is the length of 'list_seq . This means if 'list_seq" is long, the operation will be slow
since it checks every element until a match is found.

2. **Use of Data Structures**: Using a list for ‘list_seq" is not optimal for membership tests. A set would be more efficient, as membership tests are O(1) on average for a
set.

3. **Randomness**: The ‘'random.sample” function is used correctly to obtain unique elements, assuming "MIN" and "MAX" are properly defined.

4. **Variable Naming**: The names ‘randome_elements” and list_seq’ could be more descriptive. There is also a typo in ‘randome_elements *; it should be
‘random_elements .

5. **Magic Numbers**: The '100' in ‘random.sample(range(MIN, MAX), 100) " is a magic number and its significance is not clear without additional context.

6. **Error Handling**: There is no error handling for potential issues such as the “generate_random_list" function returning a non-list type or the range for
‘random.sample’ being smaller than the sample size desired.

7. **Code Readability**: The code is relatively straightforward and readable, but could benefit from comments explaining the purpose and logic.

Considering these points and assuming the unseen parts of the code (like the "generate_random_list™ function) are implemented with similar considerations, | would give
the visible code a rating of around 45 out of 100. With optimization, such as using a set for 'list_seq" and cleaning up the code, the rating could be much higher.

Rating: 45

Improve this with Al

</>
41

CODING;

Our showcase for testing inferencing cost of Open Source Al models

</> GreenCodingAl ® - Show in Joule

Welcome to the Green Coding Al.

Al is spreading like a wildfire but at what cost? This project aims to show how much asking an GPT uses in resources.
Please checkout the FAQs.

® You
@& hatis green coding in 100 words?

llama3

‘. Green coding refers to the practice of writing software code that is
environmentally friendly and sustainable. It involves designing, developing,
and deploying software applications that minimize their ecological footprint,
reduce waste, and promote ‘Ghe; gy i lenyr%areen coding aims to make software
development more eco-friendly by using techniques such as: reducing CPU usage,
minimizing data transfer, optimizing memory usage, using open-source
technologies, and promoting digital literacy to reduce e-waste. The goal is to
create software that not only benefits humans but also helps protect the

environment.

29.39 112.65 184.09 0.0953

CPU WATT GPU WATT MACHINE WATT GCO.EQ EMITTED

0.1833 4.83 51°C

SCI PER REPLY TIME SECONDS CPU TEMP

|How can | help you?

) </> CODING:;

Different models have vastly different costs. Try the playground to get a glimps!

You
what is green coding in 100 words?

tinyllama

Green Coding, also known as Lightweight Coding, is a method for software
development that simplifies the process of writing and maintaining code without
compromising performance or functionality. It involves breaking down complex
algorithms into smaller, more manageable components called "steps" to simplify
the programming process while still ensuring high—-quality code. In essence,
green coding reduces the number of lines of code required for a given function,
thereby reducing overall code size and improving software performance. The
technique is highly effective for developing web applications or large data
processing systems as it helps in identifying the most critical parts of code
while also ensuring that they are efficient enough to be executed efficiently.
In this way, green coding facilitates a more efficient development process and

ultimately provides developers with better quality code that meets performance
requirements.

28./75 98.61 1/7/0.31 0.02/3

CPU WATT GPU WATT MACHINE WATT GCO.EQ EMITTED

0.0545 149 51°C

SCI PER REPLY TIME SECONDS CPU TEMP

https://green-coding.ai

43

CODING;

Let's talk about how to immplement and automate optimizations

* We have prepared a Miro board at: https://t.ly/hTuwW

* Questions are:
* What tools are you using?

 What green optimizations have you implemented already?

 What problems have you faced?
 What magical tool would you wish for?

 Then in one hour: We deep dive into the questions and discuss them in the groups.
Please also pick out Post-its you want to talk about and start a discussion :)

</> CODING;

https://t.ly/hTuwW

Miro Board Preview

Which products / tools do you use?

Jenkins

What optimizations have you implemented

Cl/C

What do your pipelines do?

e Razing el

..... ind our APt for

securiy
wnors

Problems you have faced

What metrics do you track?

File reads par
secend

Which optimizations would you like to
implement?

Which magical "feature" or "tool" that you
would like to exist?

What is your green KPI?

Additional stuff

How do |
measure
energy in
Jenkins?

T ——

My variation
between two
measurements
is very great

T —

Network
latency is too
big to get
reproducible
measurements

—

Problems you have faced

| cannot read
energy from
the CPU in
Github

Our Cl/CD
does not
allow caching

What do you
want to add?

Grab a note!

T —

Gains are
smaller than
my
measurement
error

—

Close up of one box

CODING;

Now we want your opinions and ideas

Preview: Questions of the Miro Board

 Which products / tools do you use?

 What does your software do? / What do your pipelines do?

 What is your green KPI? / What constiutes a green software for you?
 What optimizations have you implemented

* Problems you have faced

* Which optimizations would you like to implement? / Which magical "feature”
or "tool" that you would like to exist?

& GREEN CODING;

