Carbon Measurement and Attribution for Processes and Hardware Devices in the Linux Kernel

Aditya Manglik ETH Zürich, Switzerland

Contact: manglik.aditya@gmail.com

EcoCompute-2024 25 April, 2024

Graduate student at ETH Zürich, Switzerland

Graduate student at ETH Zürich, Switzerland

Research at the intersection of computer architecture, operating systems, and networks

Outline

Background

Problem

Goal

Current Tools Hardware Solution Software Solution

System Design

End Product

Conclusion

Energy sources in computation systems: Direct: DC input / USB / Ethernet

Background

 Energy sources in computation systems: Direct: DC input / USB / Ethernet Battery

Background

 Energy sources in computation systems: Direct: DC input / USB / Ethernet Battery Energy harvesting Energy sources in computation systems: Direct: DC input / USB / Ethernet Battery Energy harvesting

We want to use the maximum minimum amount of energy to perform computation

- Energy sources in computation systems: Direct: DC input / USB / Ethernet Battery Energy harvesting
- We want to use the maximum minimum amount of energy to perform computation
- Energy (battery) capacity is a major design constraint for any computation platform, e.g., mobile phones or AR headsets

Outline

Background

Problem

Goal

Current Tools Hardware Solution Software Solution

System Design

End Product

Conclusion

Performance optimization is well-understood

Performance optimization is well-understood

Measure latency using mature tools (e.g., perf) and consistent metrics (e.g., CPU clock cycles)

Performance optimization is well-understood

Measure latency using mature tools (e.g., perf) and consistent metrics (e.g., CPU clock cycles)

Question: Tools to measure the application's energy?

Calculating Energy Consumption of a Process

Energy Consumption = Power × Latency

Calculating Energy Consumption of a Process

Energy Consumption = Power \times Latency Power is reported by the CPU (e.g., RAPL for Intel) or datasheet Energy Consumption = Power × Latency Power is reported by the CPU (e.g., RAPL for Intel) or datasheet Example: CPU reports ≈ 15 W Energy Consumption = Power \times Latency Power is reported by the CPU (e.g., RAPL for Intel) or datasheet Example: CPU reports ≈ 15 W Latency can be measured using time or perf Energy Consumption = Power \times Latency Power is reported by the CPU (e.g., RAPL for Intel) or datasheet Example: CPU reports ≈ 15 W Latency can be measured using time or perf Example: Process A takes ≈ 5 ms Energy Consumption = Power × Latency Power is reported by the CPU (e.g., RAPL for Intel) or datasheet Example: CPU reports ≈ 15 W Latency can be measured using time or perf Example: Process A takes ≈ 5 ms Energy Consumption = 15 W × 5 ms = 75 mJ Energy Consumption = Power × Latency Power is reported by the CPU (e.g., RAPL for Intel) or datasheet Example: CPU reports ≈ 15 W Latency can be measured using time or perf Example: Process A takes ≈ 5 ms Energy Consumption = 15 W × 5 ms = 75 mJ

Problem: Does not reflect the ground truth!

Oversight in Calculation Model

The model assumes linear power draw

Oversight in Calculation Model

The model assumes linear power draw

Figure: CPU power draw over time

Oversight in Calculation Model

Figure: CPU power draw over time

Limitation 1: Power (on y-axis) is not constant over time (on x-axis) due to power-gating

► The calculation model focuses on the CPU

- ► The calculation model focuses on the CPU
- Limitation 2: What about devices like memory (DRAM) and the network interface?

- ► The calculation model focuses on the CPU
- Limitation 2: What about devices like memory (DRAM) and the network interface?
- Experimental data contrary to assumptions, corroborated by [1]
 [1] Barroso, Luiz André, Urs Hölzle, and Parthasarathy Ranganathan. "The datacenter as a computer: Designing warehouse-scale machines." Synthesis Lectures on Computer Architecture 13.3 (2018): i-189.

 Platform-specific interfaces: RAPL is available only on specific Intel processors

- Platform-specific interfaces: RAPL is available only on specific Intel processors
- ► Conflicting values from datasheets

- Platform-specific interfaces: RAPL is available only on specific Intel processors
- ► Conflicting values from datasheets
- Limitation 3: No uniform interfaces or data formats to report power reliably across different platforms and devices

We are *inaccurately* calculating only *a fraction* of a *specific* system's actual energy consumption!

We are *inaccurately* calculating only *a fraction* of a *specific* system's actual energy consumption!

Take away: We cannot improve what we cannot measure.

Outline

Background

Problem

Goal

Current Tools Hardware Solution Software Solution

System Design

End Product

Conclusion

Report the statistics to the

Report the statistics to the

► End-users: In an easy-to-understand and useful format

Report the statistics to the

- ► End-users: In an easy-to-understand and useful format
- ▶ Programmers: Via APIs that improve programmer actionability

► Framework = Models and Tools

- ► Framework = Models and Tools
- Power models = How we reason about and estimate a device's power draw over time

Goal

- ► Framework = Models and Tools
- Power models = How we reason about and estimate a device's power draw over time
- Power models are often not available or poorly understood for many devices, e.g., network interfaces

Goal

- ► Framework = Models and Tools
- Power models = How we reason about and estimate a device's power draw over time
- Power models are often not available or poorly understood for many devices, e.g., network interfaces
- Tools can be built to accurately calculate power based on the models, e.g., nvidia-smi for Nvidia GPUs

Goal

- ► Framework = Models and Tools
- Power models = How we reason about and estimate a device's power draw over time
- Power models are often not available or poorly understood for many devices, e.g., network interfaces
- Tools can be built to accurately calculate power based on the models, e.g., nvidia-smi for Nvidia GPUs
- Summary: We need accurate models and reliable tools to calculate energy consumption

Outline

Background

Problem

Goal

Current Tools Hardware Solution Software Solution

System Design

End Product

Conclusion

► Probe the wires or input supply

- ► Probe the wires or input supply
- ► Reliable but does not scale!

PowerTOP

		testuser@raquel-eth:~					
File Edit Vi	iew Search Terminal H	elp					
PowerT0P	2.7 Overvie	w Idle	stats Frequer	ncy sta	ats Device stats	Tunables	
Summary:	1541.8 wakeups/s	econd,	42.9 GPU ops/sec	conds,	0.0 VFS ops/sec an	d 18.9% CPU use	
Power est	. 🥒 U	sage	Events/s (Catego	ry Descriptio	n	
4.45 W	0.0 phts/c		Dovice		nic:virbr0		
1.45 W	3 8.7 ms/s	315.3	Process		/usr/bin/gnome-she	11	
353 mW	54.7%		Device		Display backlight		
292 mW	36.7 ms/s	103.1	Process		/usr/libexec/Xorg	vt4 -displayfd 3	
200 mW	0.0 pkts/s		Device		Network interface:	wlp2s0 (iwlwifi	
146 mW	7.4 ms/s	57.6	Process		/usr/libexec/gnome	-terminal-server	
110 mW	4.9 pkts/s		Device		Network interface:	enp3s0 (r8169)	
7.31 mW	1.3 ms/s	92.4	Process		/usr/libexec/at-sp	i2-registrydu	
⊙ mW	8.7 ms/s	62.0	Process		/opt/google/chrome	/chrometype=r	
⊙ mW	5.4 ms/s	385.4	Interrup	t	PS/2 Touchpad / Ke	yboard / Mouse	
⊙ mW	4.9 ms/s	79.0	Process		/opt/google/chrome	/chrome	
⊙ mW	4.4 ms/s	2.5	Process		/usr/bin/python /u	sr/bin/powerline	
⊙ mW	4.3 ms/s	163.0	Process		powertop		
⊙ mW	3.6 ms/s	18.6	Process			=qdmwavland -	

Challenges:

1. Power estimate is a discrete-time event. Energy consumption is a continuous process with a higher correlation to battery drain.

Challenges:

- 1. Power estimate is a discrete-time event. Energy consumption is a continuous process with a higher correlation to battery drain.
- 2. Vendor-specific implementation

Challenges:

- 1. Power estimate is a discrete-time event. Energy consumption is a continuous process with a higher correlation to battery drain.
- 2. Vendor-specific implementation
- 3. Actionability of this data for programmers

Challenges:

- 1. Power estimate is a discrete-time event. Energy consumption is a continuous process with a higher correlation to battery drain.
- 2. Vendor-specific implementation
- 3. Actionability of this data for programmers

Process X consumes 1.45 Watts. What should the programmer do to optimize it?

Outline

Background

Problem

Goal

Current Tools Hardware Solution Software Solution

System Design

End Product

Conclusion

System Design

Device-Specific Measurements

Goal: Determine regression parameters

1. Minimize system load by turning off all devices

- 1. Minimize system load by turning off all devices
- 2. Reliably measure battery drain over multiple intervals

- 1. Minimize system load by turning off all devices
- 2. Reliably measure battery drain over multiple intervals
- 3. Turn on a single target device

- 1. Minimize system load by turning off all devices
- 2. Reliably measure battery drain over multiple intervals
- 3. Turn on a single target device
- 4. Sweep target device parameters from low to high while measuring battery drain

- 1. Minimize system load by turning off all devices
- 2. Reliably measure battery drain over multiple intervals
- 3. Turn on a single target device
- 4. Sweep target device parameters from low to high while measuring battery drain
- 5. Turn off target device or set parameter to low

- 1. Minimize system load by turning off all devices
- 2. Reliably measure battery drain over multiple intervals
- 3. Turn on a single target device
- 4. Sweep target device parameters from low to high while measuring battery drain
- 5. Turn off target device or set parameter to low
- 6. Repeat step 3-5 for all target devices

- 1. Minimize system load by turning off all devices
- 2. Reliably measure battery drain over multiple intervals
- 3. Turn on a single target device
- 4. Sweep target device parameters from low to high while measuring battery drain
- 5. Turn off target device or set parameter to low
- 6. Repeat step 3-5 for all target devices
- 7. Solve for regression parameters (A)

System Design

Goal: Determine regression inputs

Goal: Determine regression inputs

Goal: Determine regression inputs

Algorithm:

1. Determine PID and group processes

Goal: Determine regression inputs

- 1. Determine PID and group processes
- 2. Poll the process accounting infrastructure for the PID

Goal: Determine regression inputs

- 1. Determine PID and group processes
- 2. Poll the process accounting infrastructure for the PID
- 3. Calculate CPU time allocation, memory set, open file handles (disk), screen wakeups, and network sockets.

Goal: Determine regression inputs

- 1. Determine PID and group processes
- 2. Poll the process accounting infrastructure for the PID
- 3. Calculate CPU time allocation, memory set, open file handles (disk), screen wakeups, and network sockets.
- 4. Calculate the fraction for each process over total time

Goal: Determine regression inputs

- 1. Determine PID and group processes
- 2. Poll the process accounting infrastructure for the PID
- 3. Calculate CPU time allocation, memory set, open file handles (disk), screen wakeups, and network sockets.
- 4. Calculate the fraction for each process over total time
- 5. Input the fraction (X) in the regression model

System Design

Estimated value: All models are wrong, but some are useful

Estimated value: All models are wrong, but some are useful

Accuracy and Bias trade-off: Accurate models generate larger systemic load that biases observations
There are millions of devices and billions of ICs inside these devices. There are millions of devices and billions of ICs inside these devices.

► The power estimates can range across 2-3 orders of magnitude.

 There are millions of devices and billions of ICs inside these devices.

► The power estimates can range across 2-3 orders of magnitude.

How can we develop accurate & reliable power models across this diversity of devices?

Challenge: Validation of Ground Truth

 There is often significant difference between estimated values (from the model) and actual values (ground truth)

Challenge: Validation of Ground Truth

There is often significant difference between estimated values (from the model) and actual values (ground truth)

How to identify divergence from ground truth without hardware measurements or datasheets for validation? ► To develop **accurate & reliable** power models, we need data from different devices and users

► To develop **accurate & reliable** power models, we need data from different devices and users

▶ **Privacy**: Should users share this data to a "centralized" server?

Carbon Footprint = Energy Consumption \times Energy Composition

Carbon Footprint = Energy Consumption × Energy Composition Energy Consumption = Power × Latency

Carbon Footprint = Energy Consumption × Energy Composition Energy Consumption = Power × Latency Energy Composition depends on multiple factors, including geography, time of use, sourcing, and grid load

Outline

Background

Problem

Goal

Current Tools Hardware Solution Software Solution

System Design

End Product

Conclusion

End-users

UI Credits: Allan Day, GNOME

Command-line API for programmers: Indicate processes with high energy consumption

Example use-case: Energy-efficient code optimization suggestions in the coding platform

Outline

Background

Problem

Goal

Current Tools Hardware Solution Software Solution

System Design

End Product

Conclusion

We cannot improve what we cannot measure.

We cannot improve what we cannot measure.

Non-CPU system components may dominate the overall energy consumption.

Feedback? manglik.aditya@gmail.com

Follow-up?

