
Carbon Measurement and Attribution for
Processes and Hardware Devices in the Linux

Kernel

Aditya Manglik
ETH Zürich, Switzerland

Contact: manglik.aditya@gmail.com

EcoCompute-2024
25 April, 2024



Brief Introduction

Graduate student at ETH Zürich, Switzerland

Research at the intersection of computer architecture, operating
systems, and networks



Brief Introduction

Graduate student at ETH Zürich, Switzerland

Research at the intersection of computer architecture, operating
systems, and networks



Outline

Background

Problem

Goal

Current Tools
Hardware Solution
Software Solution

System Design

End Product

Conclusion



Background

▶ Energy sources in computation systems:
Direct: DC input / USB / Ethernet

Battery
Energy harvesting

▶ We want to use the maximum minimum amount of energy to
perform computation

▶ Energy (battery) capacity is a major design constraint for any
computation platform, e.g., mobile phones or AR headsets



Background

▶ Energy sources in computation systems:
Direct: DC input / USB / Ethernet
Battery

Energy harvesting

▶ We want to use the maximum minimum amount of energy to
perform computation

▶ Energy (battery) capacity is a major design constraint for any
computation platform, e.g., mobile phones or AR headsets



Background

▶ Energy sources in computation systems:
Direct: DC input / USB / Ethernet
Battery
Energy harvesting

▶ We want to use the maximum minimum amount of energy to
perform computation

▶ Energy (battery) capacity is a major design constraint for any
computation platform, e.g., mobile phones or AR headsets



Background

▶ Energy sources in computation systems:
Direct: DC input / USB / Ethernet
Battery
Energy harvesting

▶ We want to use the maximum minimum amount of energy to
perform computation

▶ Energy (battery) capacity is a major design constraint for any
computation platform, e.g., mobile phones or AR headsets



Background

▶ Energy sources in computation systems:
Direct: DC input / USB / Ethernet
Battery
Energy harvesting

▶ We want to use the maximum minimum amount of energy to
perform computation

▶ Energy (battery) capacity is a major design constraint for any
computation platform, e.g., mobile phones or AR headsets



Outline

Background

Problem

Goal

Current Tools
Hardware Solution
Software Solution

System Design

End Product

Conclusion



The lack of tools

Performance optimization is well-understood

Measure latency using mature tools (e.g., perf) and consistent
metrics (e.g., CPU clock cycles)

Question: Tools to measure the application’s energy?
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Calculating Energy Consumption of a Process

Energy Consumption = Power × Latency

Power is reported by the CPU (e.g., RAPL for Intel) or datasheet
Example: CPU reports ≈ 15 W
Latency can be measured using time or perf
Example: Process A takes ≈ 5 ms
Energy Consumption = 15 W × 5 ms = 75 mJ

Problem: Does not reflect the ground truth!
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Oversight in Calculation Model
The model assumes linear power draw

Figure: CPU power draw over time

Limitation 1: Power (on y-axis) is not constant over time (on
x-axis) due to power-gating
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Calculation Model

▶ The calculation model focuses on the CPU

▶ Limitation 2: What about devices like memory (DRAM) and
the network interface?

▶ Experimental data contrary to assumptions, corroborated by [1]
[1] Barroso, Luiz André, Urs Hölzle, and Parthasarathy Ranganathan. "The datacenter as a computer: Designing

warehouse-scale machines." Synthesis Lectures on Computer Architecture 13.3 (2018): i-189.
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Ground Truth

▶ Platform-specific interfaces: RAPL is available only on specific
Intel processors

▶ Conflicting values from datasheets

▶ Limitation 3: No uniform interfaces or data formats to report
power reliably across different platforms and devices
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▶ We are inaccurately calculating only a fraction of a specific
system’s actual energy consumption!

▶ Take away: We cannot improve what we cannot measure.
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▶ Programmers: Via APIs that improve programmer actionability
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▶ Framework = Models and Tools

▶ Power models = How we reason about and estimate a device’s
power draw over time

▶ Power models are often not available or poorly understood for
many devices, e.g., network interfaces

▶ Tools can be built to accurately calculate power based on the
models, e.g., nvidia-smi for Nvidia GPUs

▶ Summary: We need accurate models and reliable tools to
calculate energy consumption
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Hardware Solution

▶ Probe the wires or input supply

▶ Reliable but does not scale!
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PowerTOP

It is possible to use Powertop to view the "power estimate" of a
process/device/interrupt/timer.

Challenges:

1. Power estimate is a discrete-time event. Energy consumption is a
continuous process with a higher correlation to battery drain.

2. Vendor-specific implementation
3. Actionability of this data for programmers

Process X consumes 1.45 Watts. What should the programmer do to
optimize it?
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Device-Specific Measurements

Goal: Determine regression parameters

Algorithm:

1. Minimize system load by turning off all devices
2. Reliably measure battery drain over multiple intervals
3. Turn on a single target device
4. Sweep target device parameters from low to high while measuring

battery drain
5. Turn off target device or set parameter to low
6. Repeat step 3-5 for all target devices
7. Solve for regression parameters (A)
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Kernel Process Accounting Infrastructure

Goal: Determine regression inputs

Algorithm:

1. Determine PID and group processes
2. Poll the process accounting infrastructure for the PID
3. Calculate CPU time allocation, memory set, open file handles (disk),

screen wakeups, and network sockets.
4. Calculate the fraction for each process over total time
5. Input the fraction (X) in the regression model
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Challenge: System Design

▶ Estimated value: All models are wrong, but some are useful

▶ Accuracy and Bias trade-off : Accurate models generate
larger systemic load that biases observations
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▶ There are millions of devices and billions of ICs inside these
devices.

▶ The power estimates can range across 2-3 orders of magnitude.

▶ How can we develop accurate & reliable power models across
this diversity of devices?
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Energy Composition depends on multiple factors, including
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End-users

UI Credits: Allan Day, GNOME



Programmers

Command-line API for programmers: Indicate processes with high
energy consumption

Example use-case: Energy-efficient code optimization suggestions
in the coding platform
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Thank you!

Feedback? manglik.aditya@gmail.com

Follow-up?
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