
GREEN CODING;

Energy saving techniques
For modern cloud services and on-prem software



GREEN CODING;

Arne Tarara - Green Coding Solutions

2

Who am I

• CEO & Founder for Green Coding Solutions


• Software Developer 16+ years 


• We specialize in making software sustainble through benchmarking and 
optimization


• All our tools are open source



GREEN CODING;

Let's look at the techniques we can leverage in order to 
achieve a saving

3

Before we talk about savings



GREEN CODING;

Three kinds
The anatomy of a saving

• Saving through efficiency 

• Doing stuff different / using different approach


• Not doing stupid stuff / Extra roundtrips etc.


• Saving through doing less 

• Just do not log that much etc.


• Demand shaping


• Turning off when you do not need machine



GREEN CODING;

This talk is about energy savings. Not CO2
What we will focus on in this talk

• An energy saving is almost always a CO2 saving


• Unless when it is not ... 


• Migrating to a better processor to save energy. But the old one goes to the 
trash. Lifetime of new hardware is too short to trade-off the energy savings


• So for every energy saving we look at we still must take rebound effects / 
backlashes into consideration ❗


• Also: We will focus on efficiency and doing less in this talk. Not idle time savings.



GREEN CODING;

When you have a software in front of you?

6

How do you approach a saving?



GREEN CODING;

Three scenarios
Approaching a saving

• You know the software, because you have written it


• => Every programmer can tell you X parts of your software where a saving 
could be possible but was not implemented because of XYZ


• You have benchmarked the software and found a bottleneck


• => Every programmer can fix a bottleneck as soon as it is identified


• You have an unknown software in front of you, that seems to be running fine


• => How do you know if you can save? -> This is the talks topic



GREEN CODING;

Methodologies out there
Approaching a saving

• Static code analysis according to "best practices" 

• EcoCode / CAST etc. [1] [2]


• General Tips 

• Green Software Foundation "Patterns" [2] / Dark Patterns list by  Digital Sustainability Center [3]


• Software Design Patterns /Performance Engineering Tips


• Theoretical computer science approaches 

• Big O Notations - O(n) > O(log(n))


[1] https://github.com/green-code-initiative/ecoCode/releases 
[2] https://learn.castsoftware.com/green-software 
[3] https://patterns.greensoftware.foundation/catalog/cloud/match-utilization-requirements-of-vm/ 
[4] https://s2group.cs.vu.nl/AwesomeAndDarkTactics/

https://github.com/green-code-initiative/ecoCode/releases
https://learn.castsoftware.com/green-software
https://patterns.greensoftware.foundation/catalog/cloud/match-utilization-requirements-of-vm/


GREEN CODING;

Problems with these approaches
Approaching a saving

• All of these approaches have not seen the software running


• A recommendation like use O(n) instead of O(n^2) algorithm might even be 
less helpful if the set you are iterating over is very small because the 
preparation time of the algorithm might be higher 


• Software is very often so complex that you receive thousands of small 
recommendations, but where is the saving really?


• So we believe in order to really optimize a software you must see it running 
and look at a top down picture.



GREEN CODING;

Let's run some software

10

So



GREEN CODING;

To put some open source software into benchmarks, unit-tests 
etc.

We used the Green Metrics Tool



GREEN CODING;

Django Unit tests: Build vs. Runtime view to get high level info
Showcase #1: High level life cycle overview

Boot compared to runtime very bad. Problematic in FAAS and CI/CD cases where caching is possible

Take away: The technique is of course very easy (caching). But we need tools that give you a one shot view of where to look deeper



GREEN CODING;

Django Unit tests: Build vs. Runtime view to get high level info
Showcase #1: High level life cycle overview

If you know the application, then you can also automate tips (See our workshop later!)



GREEN CODING;

We need data libraries where we can compare use cases
Showcase #2: Software Scorecards

• We did a case with PostgreSQL and 
MariaDB


• Both were given same hardware, 
same benchmark (TPC-C)


• Both have SCI score written down


• Postgres 5x better than MariaDB 
for absolute standard use case!


• => Of course this is not always the  
case. Configuration plays a huge role. 
But the standard behaviour of a software 
counts!



GREEN CODING;

When you can actually influence the hardware
Showcase #3: On-Prem software

• Using different means in the operating system


• PowerCapping (GPU / CPU) On / Off [1]


• Sets maximum energy limit


• TurboBoost On / Off [2]


• Puts CPU into "boosted" frequency for short while


• HyperThreading On / Off [3]


• Creates extra virtual threads to have better multi-threading

[1] https://www.green-coding.io/case-studies/cpu-power-capping/  
[2] https://www.green-coding.io/case-studies/turbo-boost-and-energy/  
[3] https://www.green-coding.io/case-studies/hyper-threading-and-energy/

https://www.green-coding.io/case-studies/cpu-power-capping/
https://www.green-coding.io/case-studies/turbo-boost-and-energy/


GREEN CODING;

When you can actually influence the hardware
Showcase #3: On-Prem software

HyperThreading performance surplus in many applications far exceeds the additional needed energy

-


Be aware of bad virtualization and / or HPC



GREEN CODING;

When you can actually influence the hardware - Power Capping
Showcase #3: On-Prem software

The more power we cap, the lower the CPU energy. Whoohoo! But DRAM energy is going up? Why? ... but it is stil better in total!



GREEN CODING;

When you can actually influence the hardware - Power Capping
Showcase #3: On-Prem software

But wait, the machine energy is actually going up at some point?  
(Energy = Power * Time. Increase in time is now hitting)

Argh, and SCI is even worse ....



GREEN CODING;

When you can actually influence the hardware
Showcase #3: On-Prem software

• If you know think of second order effects


• Network storage


• Display attached to device


• Cooling of the system


• ...


• Then being fast actually becomes more relevant. However, this is only true for high load


• Take away: Energy savings do not exist in a vacuum. But always in a use-case! You 
MUST see the software in action. Even with "general tips" like power capping.



GREEN CODING;

The Zoom auto download case
Showcase #4: Doing useful work

Full case study: https://www.green-coding.io/case-studies/co2-savings-at-scale-zoom-
auto-download/

Zoom .exe downloads EVERY time on link visit (cookies deleted) 



GREEN CODING;

By integrating energy awareness over time
Showcase #5: Investigating libraries 

Issue: https://github.com/alpinelinux/docker-alpine/issues/385

Detailed Analysis: https://github.com/green-coding-solutions/alpine-energy-regression/blob/main/README.md

Green Metrics Tool includes extensive diffing. Energy regression happened in 
dependency

Energy-Timeline Feature of Green Metrics is integrated in every git 
commit and hinted where the regression happened

https://github.com/alpinelinux/docker-alpine/issues/385


GREEN CODING;

We could only show some, but I hope the message was clear
Thank you for this appetizer tour!

We advocate for actually measuring software according to use cases 
in order to advance the green coding field with actionable insights 
and optimizations


• Look at our blog and case studies for the details from this talk [1][2]

• Look at our Energy-ID project for the open source projects we 

investigate for optimizations [3]

• Look at the measurements and try our platform. It's FOSS! [4] 

[1] https://www.green-coding.io/blog 
[2] https://www.green-coding.io/case-studies

[3] https://www.green-coding.io/projects/energy-id

[4] https://www.green-coding.io/projects/green-metrics-tool

https://www.green-coding.io
https://www.green-coding.io
https://www.green-coding.io
https://www.green-coding.io

