
Linux Power Management Analysis for
Embedded Systems
Hagen Paul Pfeifer <hagen@jauu.net>

2

Copyright © 2024 Hagen Paul Pfeifer

Many of the designations used by manufacturer and sellers to distinguish their
products are claimed as trademarks. Names and brands may be claimed as the

property of others. Linux is the registered trademark of Linus Torvalds in the U.S.
and other countries.

All statements made here are made as a private person and are not connected
with my employer.

The training was created according to the highest qualitative standards.
Nevertheless, it cannot be excluded that errors have slipped in. No warranties are

made for damages resulting from text or code examples.

All right reserved. Do not redistribute without permissions.

Relevance of Power Efficiency in Embedded
Systems

In addition to environmental protection, power efficiency is generally an important aspect
in the embedded sector:

- Battery Life, Autonomy
- Heat Dissipation, especially in industrial environments, fan vs. fanless
- Cost Savings, reduced operational costs
- Regulatory and Compliance Requirements
- Integration Densities, product packaging

3
https://climate.copernicus.eu

I have decided not to
generate a random dall-e3,
midjourney placeholder
illustration. Instead show a
randomly picked climate
anomaly illustration

Reduce, Refine, Reassess: Power Tactics

To reduce power consumption:
- turn things off (e.g. idle cores, peripherals)
- turn things down (e.g. core and memory frequency)
- … do something more efficient (e.g. optimize algorithms,

use energy-efficient programming languages)

Use vendor tools to create min-max design
conceptualizations

- E.g. Xilinx Power Estimator illustrates very clearly how
switching things off or down has a strong effect on power
consumption. From DDR RAM clock rates over FPGA toggle
rates to CPU core counts and so on

4

Xilinx Power Estimator Spreadsheet

What this talk does not address - Foundations

If the hardware has been poorly designed or selected, the software stack
cannot overcome this

In product design, there are many decisions across many hardware levels
- Architecture: x86_64 vs. ARM Neoverse for cloud usage (e.g. „GFlops per Watt“)
- CPU Supported Power Management Features: sleep modes, DVFS , …
- Deep Learning Interconnects: PCIe vs NVLink vs CXL
- Processing Platform: Xilinx Ultrascale vs Intel Stratix for embedded products, FPGA vs ASIC
- Type and configuration of memory: DRAM, SRAM, Flash, etc.
- Networking: 802.3az, Energy Efficient Ethernet (EEE)
- Converter: Efficiency of a voltage converter
- Cooling: the higher the temperature,

the higher the leakage currents

5

To simplify things: from here on, we
assume that the hardware department has

done a very good job! Finger crossed ;-)

Toolset Turbocharge

There are a number of important tools & sources for the analysis:

powertop(1)
- dynamic real-time view of a system's power usage
- suggests optimizations that can lead to power saving

perf(1)
- Allows very detailed insights
- Not only pm events, but also task-relevant properties

sysfs(5)
- Virtual filesystem exports information about devices and drivers
- Standard interface to deal with many Linux PM subsystems

… and a number of specialized tools and custom scripts to handle the amount of data!

6

Task Characteristics

Jobs are executed as tasks on a CPU - developing an exact understanding of this is crucial

Task Characteristics
- How distributed is the load of specific cores, can affinity support for PM effects?
- Are energy aware scheduling optimizations for big.LITTLE systems possible?
- What is the ratio of executed and sleeping time at task level?
- Are task wake-ups globally time-aligned or completely random?
- Does task often wake up and only calculate for a short time?
- What does the task actually do during this time?
- …

Appropriate measures can lead to significant optimizations at system level for power
management!

7

Kernelshark visualizing
scheduler tracepoints

Processor Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVFS) is a power management technique where
the voltage and frequency of a processor are adjusted dynamically

Subsystem divided into:
- CPUFreq Driver - interact with hardware
- CPUFreq Governor - set policies

Governors:
- Performance
- Powersave
- Userspace
- Ondemand
- Conservative
- Schedutils

8
Source: AnandTech

Note: depending on the ARM
implementation, a multicore system may
share the same power and clock domain.

Core individual controlling may not possible

Controlling DVFS

CPU Model: Armv8 Cortex-A76; Release: 6.6.20
grep -r . /sys/devices/system/cpu/cpu0/cpufreq/
/sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq:1500000
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors:conservative ondemand userspace powersave performance schedutil
/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq:1500000
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor:ondemand
/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq:2400000
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies:1500000 1600000 1700000 [...] 2200000 2300000 2400000
/sys/devices/system/cpu/cpu0/cpufreq/related_cpus:0 1 2 3
/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq:1500000
/sys/devices/system/cpu/cpu0/cpufreq/affected_cpus:0 1 2 3
/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq:2400000
/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_transition_latency:4294967295
/sys/devices/system/cpu/cpu0/cpufreq/scaling_driver:cpufreq-dt
/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_min_freq:1500000

9

CPUFreq subsystem is controlled via sysfs file system

Note: tools like cpufreq-info(1) are wrapper
around sysfs. Eye-candy included, use if you prefer

perf record -a -e power:cpu_frequency -- sleep 10
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0,110 MB perf.data (8 samples)]

Monitoring DVFS

10

Kernel option CONFIG_CPU_FREQ_STAT provides basic overall statistics via sysfs

Use perf(1) to get detailed insight into all DFVS commanding with exact switching time,
new target frequency on core basis

Record data

perf script
 kworker/1:0-mm_ 23 [001] 4615.651204: power:cpu_frequency: state=1800000 cpu_id=0
 kworker/1:0-mm_ 23 [001] 4615.651208: power:cpu_frequency: state=1800000 cpu_id=1
 kworker/1:0-mm_ 23 [001] 4615.651208: power:cpu_frequency: state=1800000 cpu_id=2
 kworker/1:0-mm_ 23 [001] 4615.651209: power:cpu_frequency: state=1800000 cpu_id=3
 kworker/2:2-eve 1310 [002] 4615.747314: power:cpu_frequency: state=2400000 cpu_id=0
 kworker/2:2-eve 1310 [002] 4615.747317: power:cpu_frequency: state=2400000 cpu_id=1
 kworker/2:2-eve 1310 [002] 4615.747317: power:cpu_frequency: state=2400000 cpu_id=2
 kworker/2:2-eve 1310 [002] 4615.747317: power:cpu_frequency: state=2400000 cpu_id=3

Analyze data

Note: Intel HWP ("Speed
Shift") cannot be monitored

by perf(1)

Energy Aware Scheduling - big.LITTLE Systems

Increasing number of big.LITTLE systems require a suitable process scheduler
- Samsung Exynos 9 Serie 8895: 4 x ARM Cortex-A73, 4 x ARM Cortex-A53
- Google Tensor G3: 1 x ARM Cortex-X3, 4 x ARM Cortex-A715, 4 x ARM Cortex-A510

Linux support Energy Aware Scheduling (EAS), without big.LITTLE systems would be pointless
- CONFIG_SCHEDUTIL
- CONFIG_ENERGY_MODEL
- CONFIG_CPU_FREQ_GOV_SCHEDUTIL

Capacity: "amount of work it can absorb when running at its
highest frequency compared to the most capable CPU of the system"

11

record scheduling data
$ perf record -e sched:sched_switch,sched:sched_migrate_task -a -- sleep 10

recorded, analyze and verify EAS decisions
$ perf script

CPU Idle Subsystem

The CPUIdle subsystem on Linux is designed to manage idle CPU states to help reduce
power consumption when the processor is not actively executing tasks

Drivers:
- Hardware interface: communicate with the hardware to apply

changes in power states as decided by the governors
- Examples: acpi idle, intel idle

Governors:
- Decision Makers: Determine when and how to change power states based on policies
- Examples: menu, teo, ladder & haltpoll

12

c-state distribution, idle system

CPU Idle - Energetically Beneficial

13

DTS file for Xilinx ZynqMP

 idle-states {
 entry-method = "psci";

 CPU_SLEEP_0: cpu-sleep-0 {
 compatible = "arm,idle-state";
 arm,psci-suspend-param = <0x40000000>;
 local-timer-stop;
 entry-latency-us = <300>;
 exit-latency-us = <600>;
 min-residency-us = <10000>;
 };
 };

 idle-states {
 entry-method = "psci";

 cpu_pd_wait: cpu-pd-wait {
 compatible = "arm,idle-state";
 arm,psci-suspend-param = <0x0010033>;
 local-timer-stop;
 entry-latency-us = <1000>;
 exit-latency-us = <700>;
 min-residency-us = <2700>;
 };
 };

DTS file for Freescale i.MX8 Mini

Latency values within the device tree files
makes the platform specific values known
to the operating system

https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/idle-states.txt

CPU Idle - Commanding & Status

14

Both CPUIdle Governors configuration and statistics can be queried via sysfs

Query statistics:

$ grep . /sys/devices/system/cpu/cpu4/cpuidle/state*/{name,time} | sort -n
/sys/devices/system/cpu/cpu4/cpuidle/state0/name:POLL
/sys/devices/system/cpu/cpu4/cpuidle/state0/time:83041750
/sys/devices/system/cpu/cpu4/cpuidle/state1/name:C1E
/sys/devices/system/cpu/cpu4/cpuidle/state1/time:488597510
/sys/devices/system/cpu/cpu4/cpuidle/state2/name:C6
/sys/devices/system/cpu/cpu4/cpuidle/state2/time:179749418
/sys/devices/system/cpu/cpu4/cpuidle/state3/name:C8
/sys/devices/system/cpu/cpu4/cpuidle/state3/time:1310566555
/sys/devices/system/cpu/cpu4/cpuidle/state4/name:C10
/sys/devices/system/cpu/cpu4/cpuidle/state4/time:80860014998

CPU Idle - Granular Tracking

15

Individual C State transitions can be tracked with Perf

Command :

$ perf record -a -e power:cpu_idle -- sleep 60
$ perf script --gen-script python
$ vim perf-script.py
$ perf script -s ./perf-script.py
 2 36002.863851506 state=4294967295, cpu_id=2
 18 36002.863873513 state=4, cpu_id=18
 2 36002.864113542 state=4, cpu_id=2
 18 36002.864140040 state=4294967295, cpu_id=18
 2 36002.864272308 state=4294967295, cpu_id=2
 16 36002.864349085 state=4294967295, cpu_id=16
 18 36002.864381491 state=4, cpu_id=18
 0 36002.864396402 state=4294967295, cpu_id=0
 12 36002.864403081 state=4294967295, cpu_id=12
 0 36002.864415912 state=4, cpu_id=0
 12 36002.864447521 state=4, cpu_id=12
 2 36002.864472649 state=4, cpu_id=2
 16 36002.864490568 state=4, cpu_id=16

Note: state numbers are not C states! Numbers
are kernel array index into states. Use sysfs for

mapping information, see previous slide

Scratching the Surface - There is More

Covered: task behavior, DFVS & CPU idle analyzation

But there is a lot more:
- Power management quality of service (PM QoS) & latency impact for (RT) workloads
- IRQ, kerneltasks and timer behavior is crucial for proper PM
- Thermal management, the cooler the package, the fewer leakage currents
- Suspend to ram, hibernate, hybrid sleep
- Regulator framework and PMIC drivers
- Generic power domain for managing multiple devices (power rails)
- …

Research activities (ongoing, two master students attending Eco-Compute 2024):

- eBPF based CPUIdle Governor, for dynamic, userspace,
targeted governor algorithms

- Machine Learning based Task Prediction, foundation for targeted (EAS) scheduling

16

Thank You!

Energy well spent! Thanks for sticking with me — questions?

For late questions or comments: hagen@jauu.net

17

Legal Disclaimer

This presentation is for informational purposes only and is not intended as an endorsement or promotion of the products
or brands mentioned herein. The trademarks, logos, and service marks (collectively the “Trademarks”) displayed in this
presentation are registered and unregistered Trademarks of their respective owners.

No affiliation or endorsement by the trademark owners is intended or should be inferred. The use of these Trademarks in
this presentation does not imply any affiliation with or endorsement by their respective owners.

The views and opinions expressed in this presentation are those of the presenter and do not necessarily reflect the official
policy or position of the brands mentioned. This presentation is not sponsored, endorsed by, or associated with any of the
brands whose products are mentioned.

All information in this presentation is provided on an “as is” basis with no guarantees of completeness, accuracy,
usefulness, or timeliness, and without any warranties of any kind whatsoever, express or implied.

18

