APPROACHES FOR ECOLOGICAL TRANSPARENCY IN OPEN SOURCE CLOUD INFRASTRUCTURES

d

- 2016-2021: Data Analytics and Natural Language Processing
 - Building scalable microservice-based NLP/AI Pipelines
- 2021 joined Cloud&Heat Technologies
 - Presales Consultant Kubernetes Service
 - Product Owner Cloud Services

1 11 191 11 11 11 1

Overview Cloud&Heat and Motviation

We are a holistically sustainable cloud service and cloud technology provider from Dresden with the aim of strengthening digital sovereignty in Germany and Europe.

Our company

Learn more

OVERVIEW PRODUCTS & SERVICES

Cloud services

Services

Infrastructure as a Service (laaS)

With our laaS, you benefit from a sustainable, opensource-based cloud infrastructure with a long-term proven operating concept.

Learn more

Managed Kubernetes

Concentrate on your applications, we take over the handling of your Kubernetes clusters.

Learn more

Cloud consulting

As a cloud provider, we pass on our expertise to you in customized consulting and training offers as well as hands-on.

Learn more

Digital infrastructures

On-prem-complement

Cloud&Heat Atlas

We provide you with a sustainable, digitally sovereign on-prem complete solution for your machine learning applications.

Learn more

Services

Customized Liquid Cooling Solutions

Our Customized Liquid Cooling Solutions improve the energy efficiency of your data centre operations.

Learn more

Cloud&Heat Titan

With Cloud&Heat Titan, we offer a highly secure complete digital package for critical infrastructures (CRITIS)

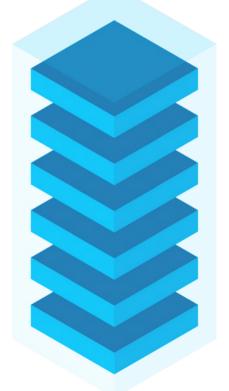
Learn more

Cloud&Heat Onpremix

With Cloud&Heat Onpremix, we offer a digital sovereign on-prem complement to your existing multi- or hybrid-cloud strategy.

Learn more

Infrastructure consulting


We support you with our consulting and training in planning, setting up and operating your digital infrastructure.

Directly to the training offer

Learn more

CLOUD&HEAT TECHNOLOGY STACK

THE BASIS OF OUR PRODUCTS AND SERVICES

Technology stack

Krake

R&D project for the orchestration of containerized workloads on distributed cloud platforms

Kubernetes

Managed Kubernetes service for the operation of container-based applications

OpenStack

Use of open-source technologies and de-facto standards for cloud infrastructures

Yaook

Fully automated and free OpenStack Lifecycle Management (LCM) tool

Bare Metal

Combination of hardware components (CPU, GPU, RAM, storage), configuration, monitoring and operations

Hot water cooling / waste heat utilisation

Integration and operation of direct hot water cooling systems with waste heat utilisation for heating purposes

COMMUNITIES

SHAPING THE DIGITAL FUTURE TOGETHER

ALASCA

The association positions itself as a united cloud and open-source foundation for the joint (further) development of operational open-source projects for cloud infrastructures to strengthen digital sovereignty in Europe.

Yaook

YAOOK

Yaook (Yet another OpenStack on Kubernetes) is providing a fully automated and free OpenStack Lifecycle Management (LCM) and is being further developed by the open-source community within the ALASCA association. OpenInfra Foundation

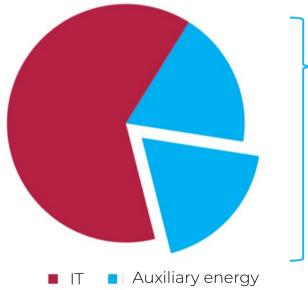
Since the founding of the Open Infrastructure Foundation, we have been an active member. We have been working with OpenStack since 2012 and have been able to build up extensive OpenStack expertise in recent years. Gaia-X

gaia-x

Gaia-X aims to develop a secure and trustworthy data infrastructure in Europe. Cloud&Heat is involved in several working groups. **OSBA**

As a member of the OSBA, we work closely with the Sovereign Cloud Stack (SCS). Since June 2023, we have been a member of the working group "Cloud" with the aim of defining open standards for an open-source cloud offering in public administration and politics.

To the association


To the association

¹ Borderstep Institut (Hintemann, R., Hinterholzer, S.) - Rechenzentren 2021 ² Arbeitsgemeinschaft Energiebilanzen (12/2022)

ENERGY SAVING POTENTIAL

AUXILIARY ENERGY

Electric energy demand for German data centres in 2020:

16 TWh¹

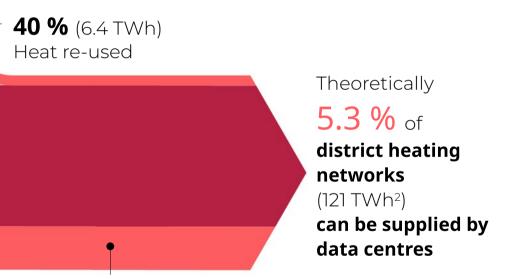
▲ 3.2 % of electric energy production in Germany, 2020 (503 TWh²)

5.7 TWh¹ is auxiliary energy (37 %)

50 % savings

2.9 TWh (0,59 kWh/kWh_{IT} ☑ 0,30 kWh/kWh_{IT}) ☑ Electric energy demand of 900,000 households

(0.6 % of electric energy production in Germany, 2020)

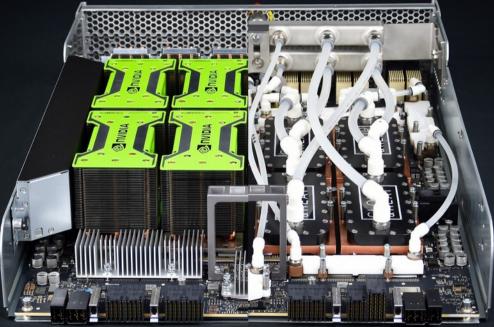


WASTE HEAT

16 TWh¹ Waste heat

in 2020

from German data centres

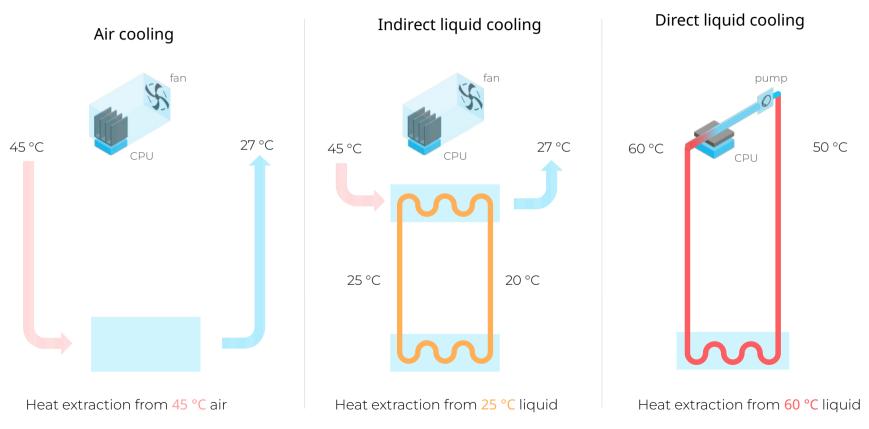


22 % renewable energy

CLO & HE

COOLING SYSTEM

SERVER COOLING METHODS - AIR COOLING VS. DIRECT LIQUID COOLING



COOLING CONCEPTS

POTENTIAL FOR WASTE HEAT UTILIZATION

CLOUD & HEAT

POTENTIAL FOR WASTE HEAT UTILIZATION

SELECTION OF UTILIZATION SCENARIOS

		Temp	peratu	ire in	°C								
Szenario	Typ. Power												
	in kW	0	10	20	30	40	50	60	70	80	90	100	110
Heating	5 - 100												
Warm water	5 - 100												
District heating	25 - 1000												
Pool heating	8 - 300												
Adsorption cooling	20 - 5000												÷
Sea water desalination (MED)	2 - 160												÷
Pitch heating (stadium)	10 - 1400												
Indoor-Farming	1 - 300												
Fish farming	5 - 100												
Algae farming	10 - 100												
Fuel/air preheating gas turbine	10 - 300												\rightarrow
Industrial drying processes	5 - 3700												÷
Water preheating	variable												÷

Households / municipalities Agriculture Industry 8 Н П/

KEY PERFORMANCE INDICATORS

CLOUD & HEAT

DIN EN 50600-4-X AND ISO/IEC 30134-X, AS OF 2023

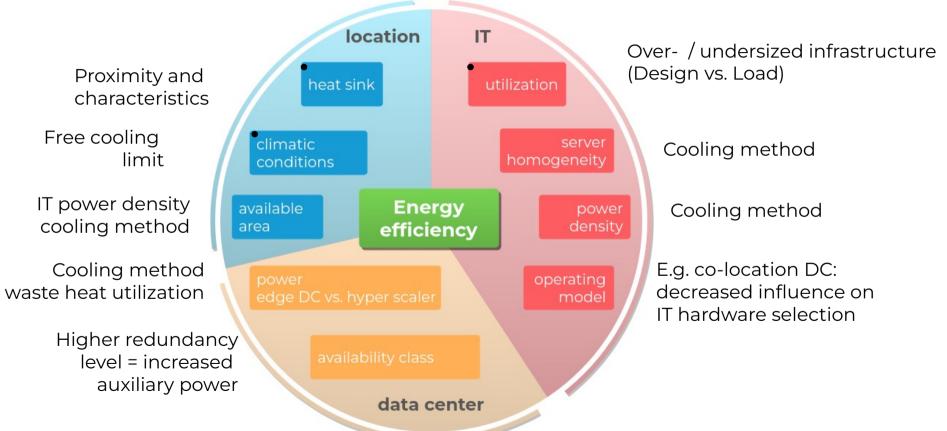
KPI Standards

KEY PERFORMANCE INDICATORS

PUE - POWER USAGE EFFECTIVENESS

How much auxiliary energy do I need **in addition** to the energy my servers need?

KEY PERFORMANCE INDICATORS

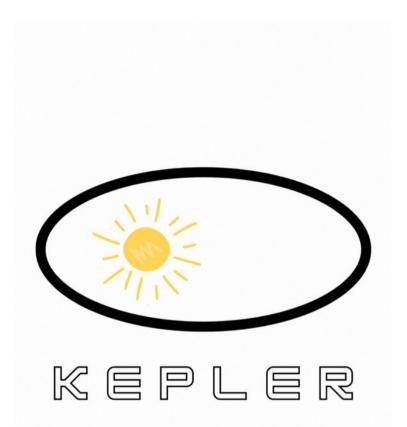

CLOUD & HEAT

PUE - POWER USAGE EFFECTIVENESS

KPI:	KPI function:								
PUE	Energy efficiency of the data centre infrastructure								
Formula:		Unit:	Value:	Period:	Standard:				
$PUE = \frac{DC EI}{IT En}$	nergy demand ergy demand	demand lemand –		1 year	EN 50600	-4-2			
Definition: Emergency power supply:									
Energy demand of the whole data centre compared to the energy demand of the IT				Back-up power supply must only be accounted for if it exceeds 1% of the total energy demand					
Meaning:	Derivates	Derivates of KPI:							
PUE – 1 is the energy demand of the data centre infrastructure, lower PUE means better efficiency			iPUE, pi	iPUE, pPUE, dPUE, idPUE, pdPUE und ipdPUE					
				DCiE – data centre infrastructure $DCiE = \frac{1}{PUE}$					

ENERGY EFFICIENCY

EXTERNAL INFLUENCING FACTORS



CLOUD & HEAT

e. A. 111111.

Tooling

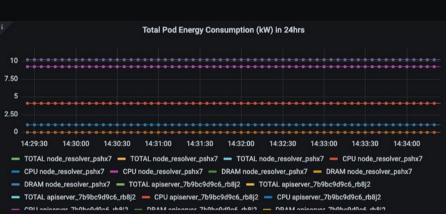
Kepler (Kubernetes-based Efficient Power Level Exporter) uses eBPF to probe performance counters and other system stats, use ML models to estimate workload energy consumption based on these stats, and exports them as **Prometheus** metrics

We are a Cloud Native Computing Foundation sandbox project.

Copyright Contributors to the Kepler's project

VISUALIZING KEPLER METRICS

፡፡ monitoring / Kepler Exporter Dashboard 🏠 😪


Namespace openshift-kube-apiserver ~

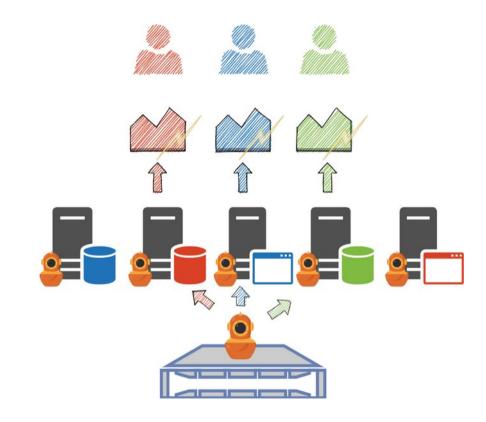
Pod kube_apiserver_rhtctrl1.npgcable.intel.com ~

Total Pod Energy Consumption (kW) in openshift-kube-apiserver in 24hrs

1.4

B

🕘 Last 5 minutes 👻 😡 🖏 5s 🗸


	Total Energy Consumption (kW) by Namespac	e in 24hrs ~ 🖇
	Namespace 💎	kW ↓
022-04-15 14:34:20	openshift-storage	1009
022-04-15 14:34:20	openshift-monitoring	667
022-04-15 14:34:20	openshift-kni-infra	488
022-04-15 14:34:20	openshift-multus	488
022-04-15 14:34:20	openshift-sriov-network-operator	411
022-04-15 14:34:20	openshift-dns	336
022-04-15 14:34:20	openshift-machine-config-operator	309

SCAPHANDRE

Scaphandre is a monitoring agent, dedicated to energy consumption metrics. Its purpose is to help measuring and thus understanding tech services energy consumption patterns. This could be used, to enable the tech industry to shift towards more sustainability.

SCAPHANDRE

Enabling a communication between a scaphandre instance on the hypervisor/bare metal machine and another one running on the virtual machine. The scaphandre agent on the hypervisor will compute the metrics meaningful for that virtual machine and the one on the VM access those metrics to allow its user/administrator to use the data as if they had access to power metrics in the first place (as if they were on a bare metal machine).

This allows to break opacity in a virtualization context, if you have access to the hypervisor, or in a public cloud context if the provider uses scaphandre on its hypervisors.

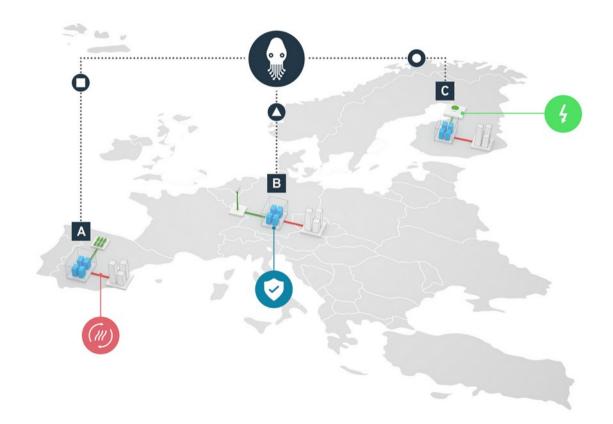
(On Qemu/KVM hypervisors)

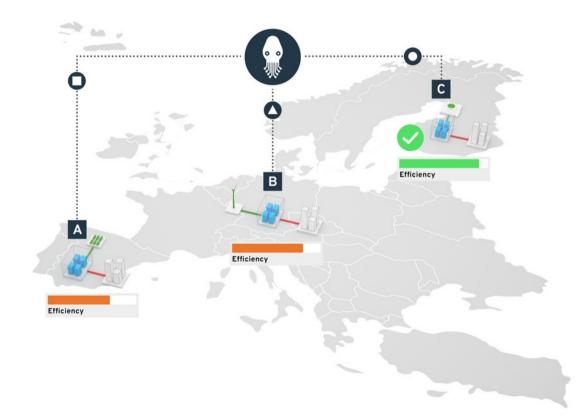
SCAPHANDRE – PROCESS LEVEL POWER CONSUPMTION

器 Public / Scaphandre 👒

6

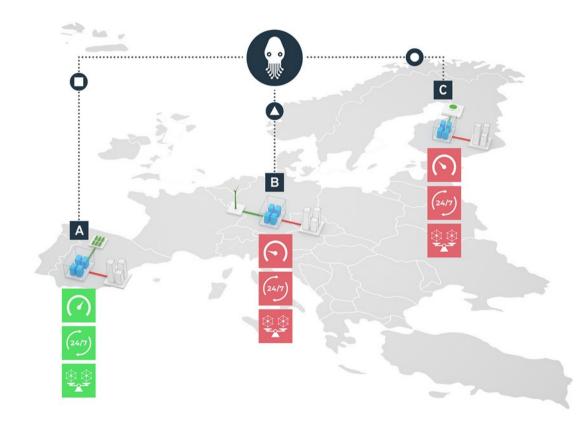
글 🕘 Last 6 hours 🗸 📿 15



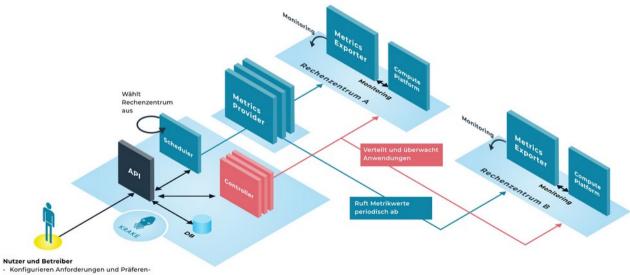

KRAKE

MAXIMISING THE ENERGY EFFICIENCY OF COMPUTING JOBS WITH OPEN SOURCE SOFTWARE

REQUIREMENT-OPTIMISED WORKLOAD DISTRIBUTION



ENERGY-OPTIMISED PLACEMENT OF WORKLOADS


CLOUD & HEAT

PLACEMENT OF WORKLOADS BASED ON FURTHER INDIVIDUAL METRICS

CLOUD & HEAT

FUNCTIONAL OVERVIEW

zen für eine bestimmte Anwendung

NOMINATED FOR SAXON DIGITAL PRIZE 2024

https://buergerbeteiligung.sachsen.de/portal/smwa/beteiligung/themen/1040556

MOTIVATION AND ONGOING PROJECTS

INTEGRATION OF KRAKE INTO TELLUS*

- Tellus is a Gaia-X research project funded by the Bundesnetzagentur
- The goal is to simplify the composition of cloud and network services while ensuring end-to-end service quality
- Krake, an open-source tool for automatic service orchestration in containerized environments, is being integrated into Tellus
- Krake should be used to proactively reschedule the composite service in case the user-defined requirements are at risk of being compromised. This can happen if a service being used fails or its performance declines. In such cases, Krake steps in to transparently and effectively reschedule in order to satisfy the user's needs

* This project is funded by the funding competition "Innovative and practical applications and data spaces in the digital ecosystem GAIA-X" of the BMWK.

MORE ABOUT KRAKE

RESOURCES / GET IN TOUCH

More Information on Krake and how to get involved:

- <u>https://krake.cloud</u>
- https://gitlab.com/rak-n-rok/krake

Versierd Verlag Advin Volge, all and Can del Paulos darge of

- In November 2023, Krake found its new home at ALASCA a non-profit organisation for the (further) development of operational, open cloud infrastructures
- More about ALASCA: https://alasca.cloud

When and where?

- 29 and 30 October 2024
- German Hygiene Museum Dresden

