qaware.de

The Fast and the Frugal: Microservices at Race

Sascha Böhme sascha.boehme@qaware.de

Typical Setup of Microservices

Sample Microservice Architecture

Overview Query a list of items with pagination

Details Query a single items by identifier

Sample Microservice Implementations (Functionally Equivalent)

Requirements for Measuring Energy Consumption

Measurement Tools under Consideration

Approach 1: Simple Linear Model

LiMo

Approach:

- measure usage of CPU usage and memory of a container
- normalize measured values into comparable ranges ("energy consumption") via constant factors

Assumptions:

- simple linear model
- constant factors are realistic (see greenframe.io)

Approach 2: Detailed Hardware Model

Green Metrics Tool

Approach:

- run system of containers and measure changes to the idle state of the machine
- compute the energy consumption from measured sensor values and based on a knowledge of the hardware

Assumptions:

- most systems are built on containers
- hardware sensors and machine model give sufficient insights, higher level of details would be unreliable

Approach 3: Fine-Granular CPU Measurement

Kepler

Approach:

- collect Linux performance counters and further hardware sensors with low overhead at system runtime
- compute the energy consumption from measured sensor values, optionally supported by machine learning

Assumptions:

- CPU usage dominates energy consumption
- relevant systems run on Kubernetes and Linux

High-Level Comparison

LiMo	Green Metrics Tool	Kepler
focus on benchmarks, possibly artificial setup	focus on benchmarks, possibly artificial setup	continuous measurement, even in production environment
very few fixed sensors	configurable set of sensors, support for custom sensors	rich fixed set of sensors
linear model with factors based on greenframe.io	hardware-specific, non-linear model with machine learning	linear model, support for machine-learning model

Technical Comparison

LiMo	Green Metrics Tool	Kepler
application runs in Docker	application runs in Docker	application runs in Kubernetes
focus on a single container	holistic view of an entire machine	statistics for all pods and nodes in a cluster
no history of runs, no graphical views	history of runs, graphical comparison	continuous history, graphical dashboards

Experience Report

LiMo	Green Metrics Tool	Kepler
simple setup, easy usage	complex setup, smooth usage	standard setup, slightly complex usage
doubtful factors for scaling measurements	not very well suited for long running processes, issues in configuration	regular outages and issues at runtime
applicable to simple, initial analyses	well-suited for full-stack benchmarks, elaborate model	well-suited for trends, usable for comparisons, insights into running clusters

Comparison Setup

Overview

• pick a random page of 10 items

Details

- pick a random item
- enrich with 3 data points
- fetch data for every data point

Competitors

Rust

Go

LiMo Test Infrastructure Setup

LiMo-Based Comparison: CPU only

LiMo-Based Comparison: CPU and Memory

QA WARE

GMT-Based Comparison

Kepler-Based Comparison

Awards

Rust: consistent, low energy consumption

GO

Go: medium energy consumption, high variance

Quarkus: medium energy consumption, unclear benefit of native mode

The Next Comparison

Further implementations:

Javascript?

Java with Spring?

? something else?

With improved measuring tools?

qaware.de

QAware GmbH

Aschauer Straße 30 81549 München Tel. +49 89 232315-0 info@qaware.de

in linkedin.com/company/qaware-gmbh xing.com/companies/qawaregmbh slideshare.net/qaware github.com/qaware