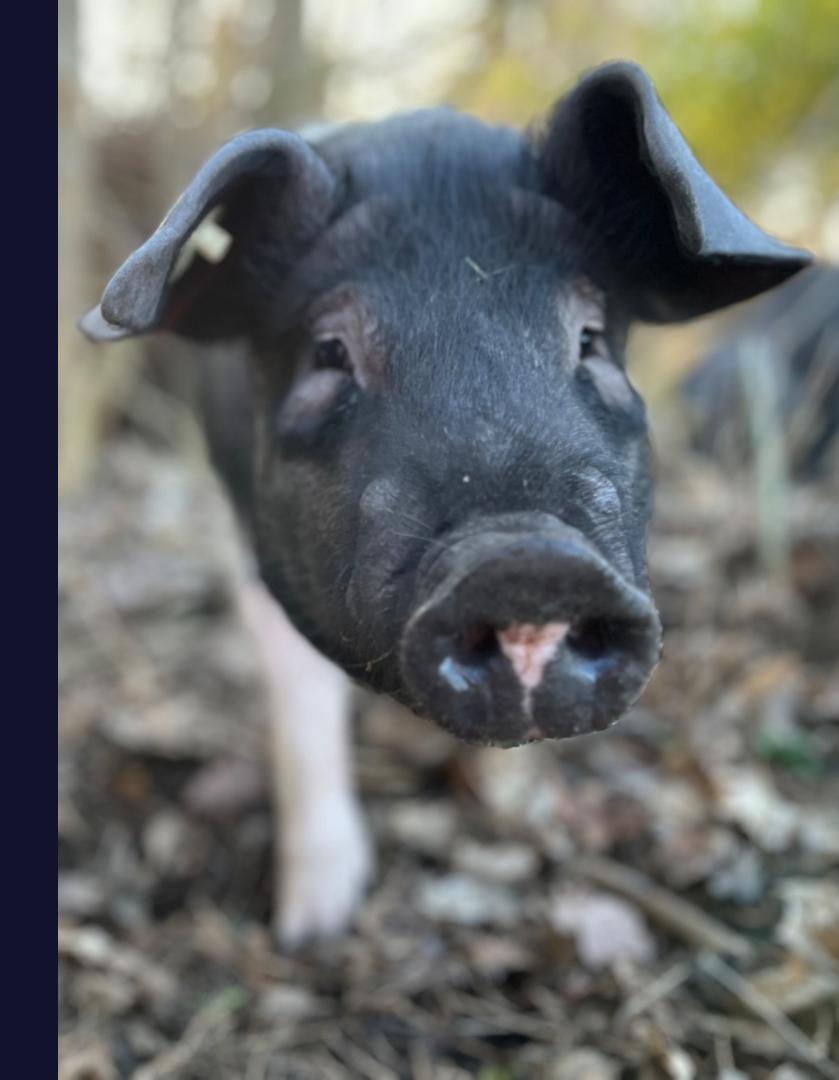

/proc/energy

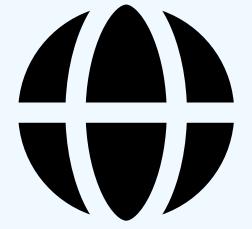

Didi Hoffmann

WHO AM I?

- Geerd-Dietger Hoffmann = Didi
- CTO at Green Coding Solutions
- Love coding
- Farmer

Good Code is Green

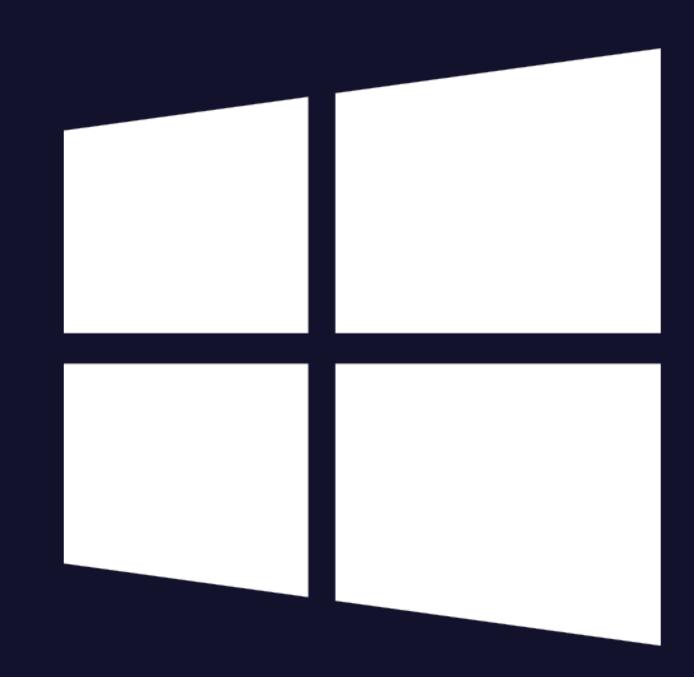
Green Coding Solutions is driving the transition to sustainable software. We provide open-source tools and expertise to help companies, NGOs, and developers measure, understand, and reduce their digital carbon footprint.


P.S. We are also the people that started this conference;)

The Problem

Resource consumption is rising

Things are becoming more and more complex



We can't see the sources

Window

- Windows Energy Estimation Engine (E3)
- Gives you uJ for processes
- Close source
 - -> No idea how the values are calculated
- Not well documented
- Only on devices with battery
- No WSL support

mac0S

- powermetrics
- Gives you energy impact for processes
- Close source
 - -> No idea how the values are calculated
- Has been party reverse engineered
- Not well documented
- Sometimes give you totally wrong values
- We use it for some programs

Linux

- Linux, despite dominating server (77.4%) and mobile (70.8%) markets, lacks effective tools for process-level power measurement.
- We can get measurement for the whole core/ chip with RAPL. But security a problem here.
- We have models that use cpu utilization but that is not a very good value

Making Linux best in class

1

Provide real-time, process-level energy monitoring.

2

Low overhead and applicable on a wide variety of machines

3

Develop an open-source extensible framework

Making Linux best in class

L3E

Linux Energy Estimation Engine: Flexible, customizable energy models with fine-grained metrics.

PowerLetrics

Open-Source Implementation: Adapts powermetrics methodology for Linux using eBPF.

ProcPower

Secure Approach: Innovative /proc integration eliminates the need for elevated privileges.

L3E

A model that can predict the energy consumption of a process based on hardware counters

- Works in containers (less counters -> less accurate)
- For better accuracy needs calibration
- Graphic cards difficult (not exposed to the kernel)
- Non linear

$$\nabla = \frac{1}{2} \frac{\partial H}{\partial t} \qquad \nabla = \frac{1}{2} \frac{\partial F}{\partial t}$$

$$\nabla \times F = \frac{1}{2} \frac{\partial H}{\partial t} \qquad \nabla \times H = \frac{1}{2} \frac{\partial F}{\partial t}$$

$$\nabla \times H = \frac{1}$$

Starting powermetrics monitoring. Press Ctrl+C to stop.

*** Sampled system activity (Tue Oct 01 18:14:26 2024) (5017.30ms elapsed) ***

^{***} Running tasks ***

PID	Name	Energy Impact	CPU Utilization (%)	CPU Time (ns)	CPU Wakeups
2917 I	node I	951.53	 0.40	 40349518	 45
2927	node I	942.99	0.01	770247	1 7
2926		942.99	0.01	736832	7
2925 I	node I	942.99	0.01	672625	1 7
2924		942.99	0.01	659457	1 7
2957 I	node I	942.79	0.00	425960	1 6
2921 I	node I	941.92	0.22	22354820	1
4336 I	cpptools-srv	416.29	0.00	422083	l 5
2952	node	110.12	0.01	1231581	10
2928	node I	108.31	0.01	581916	1
1036 I	node I	107.39	l 0.05	4758286	12
0	<unknown></unknown>	95.34	49.07	4906520636	298
1084	node I	94.00	l 0.25	25004818	25
6596 I	node I	71.81	0.04	3772290	1 2
1704 l	gmain	57.68	0.00	451125	1 2
1706 I	GUsbEventThread	57.68	0.00	328791	2
664 l	gmain	46.54	0.00	195833	2
337 I	multipathd	29.54	0.00	284083	l 6
355 I	multipathd	29.34	0.01	1077625	5
8176 I	kworker/0:2-events	12.74	0.23	23458024	63
8259 I	kworker/u4:3-events_power_efficient	9.01	0.02	2041833	15
4264 l	cpptools	9.00	0.01	1190874	11
4265 l	cpptools	8.99	0.01	665459	11
4267 l	cpptools	8.80	0.01	1353330	10
907 l	sshd	8.45	l 0.06	5758124	22
4266 l	cpptools	7.59	0.00	124417	4
4261 l	cpptools	7.39	0.00	435791	l 3
8162 I	kworker/1:3-events	6.46	l 0.43	42582470	31
214		6.21	0.01	843330	l 3
94		6.00	0.00	231125	1 2
2900 l	tokio-runtime-w	4.42	0.04	3652498	l 8
8165 l	kworker/u4:2-events_unbound	4.01	l 0.02	1550626	20
2894 l	code-38c31bc77e	4.01	0.01	775082	1
2901	tokio-runtime-w	3.81	l 0.02	1516208	l 5
2870 l	sshd	2.76	0.01	1374249	1 2
34 l	kcompactd0 I	2.00	0.01	780920	10
8277 I	sudo	1.89	0.00	61418	1
47 l	kworker/0:1H-kblockd	1.60	0.00	458792	4
16 I	ksoftirqd/0	1.00	0.00	139709	4
31 I	khungtaskd	0.22	0.03	2863498	1
23 I	migration/1	0.20	0.00	101834	1
18 I	migration/0	0.20	0.00	78750	1
17 l	rcu_preempt	0.20	0.00	7834	1

powerletrics

- Like powermetrics
- Uses eBPF and RAPL to get values from the OS
- Separates them on a per process level
- Can be used for benchmarking, testing
- => When you are looking/ coding
- Currently in python
- Overhead 2%
- Funded by Catalyst Fund

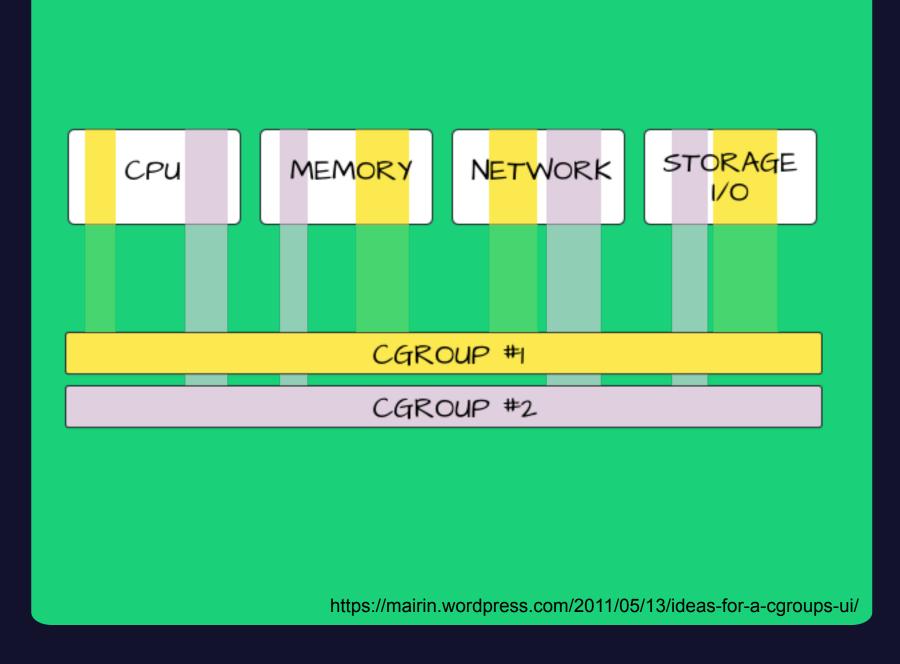
\$ pip install powerletrics

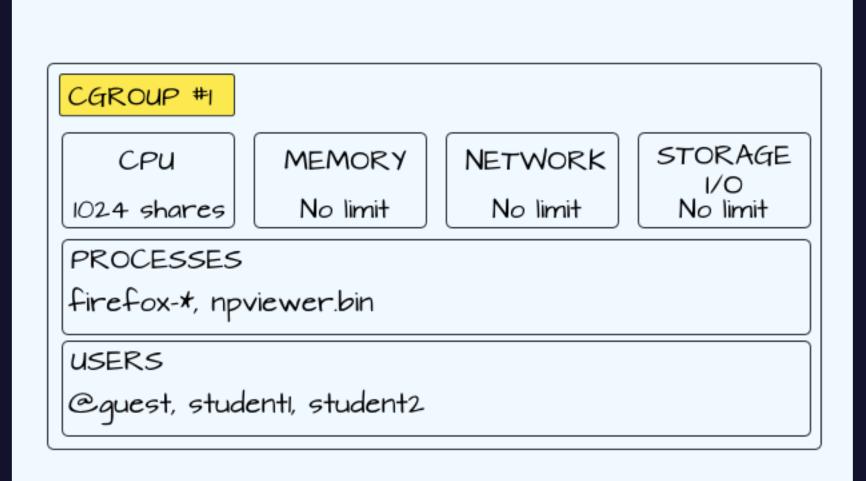
Kernel Extension

Collects all the metrics in the kernel with very low overhead

Exposes through /proc

And can be read in cgroups


Secure


Windowing approach assures that no sensitive data can be leaked

ProcPower

cgroups

Data

/proc/energy/cgroup

Shows the energy consumption of the processes in the current cgroup

/proc/energy/all

Shows the energy consumption of all the processes on the system. Requires root

/sys/kernel/debug/ energy/all

Gives you everything for model training or debugging

Coolthings

As easy as accessing a file

Your standard logging can collect energy metrics

Hosting

Your programs in your hosting environment can access their energy values

Energy becomes A*

Suddenly energy considerations become a first class citizen without much overhead

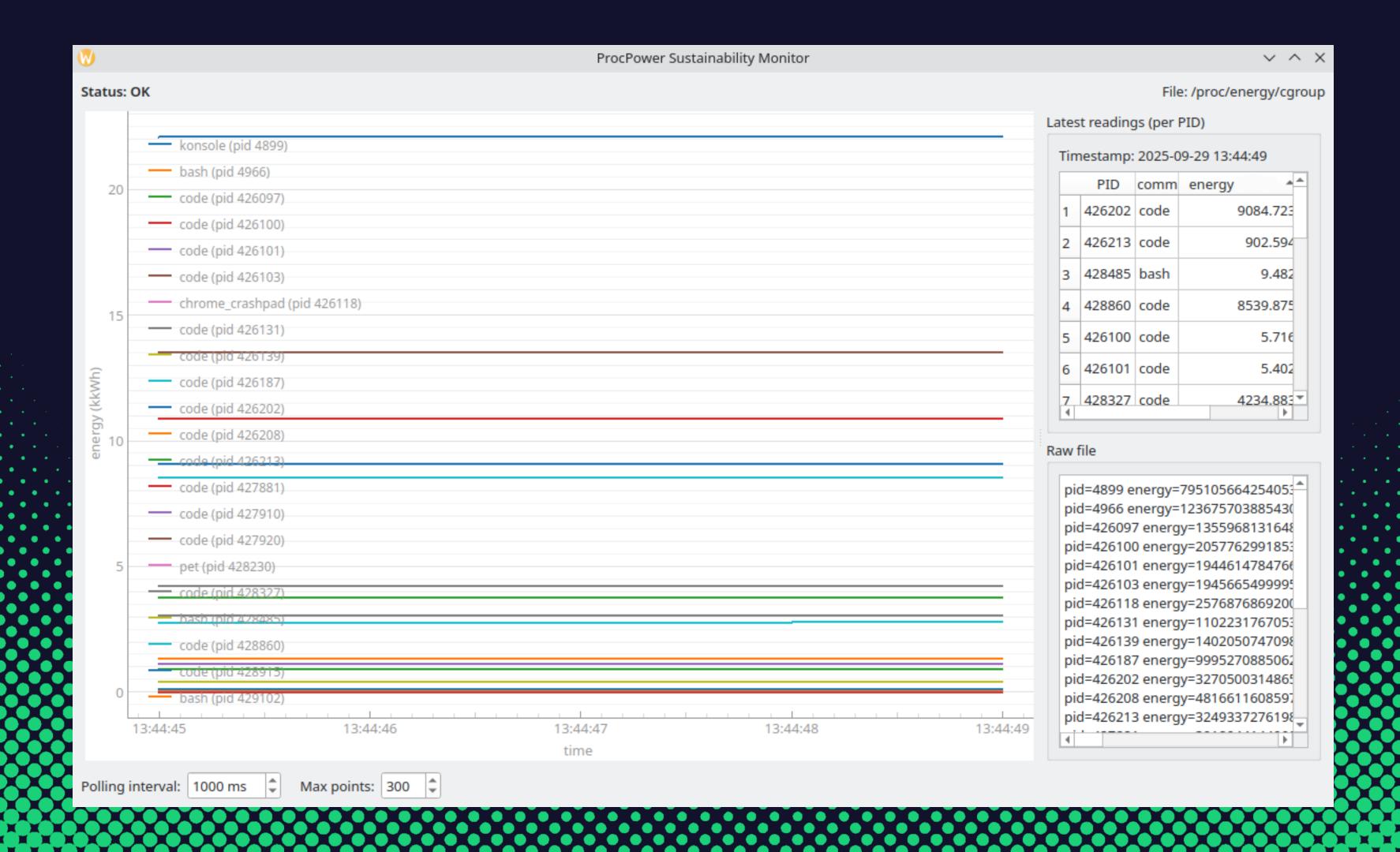
```
didiafedora: $ cat /proc/energy/cgroup
pid=5483 energy=2102001536990 alive=1 kernel=0 cpu_ns=420298267237 mem=6352896 instructions=102040161 wakeups=178863 diski=2293694464 disko=0 rx=0 tx=0 window_time=904474254342 comm=bash
didiafedora: $ sudo cat /proc/energy/all | head -n 10
timestamp=908562889618
iterations=7818
sample_ns=1000000000
window_ns=1000000000
rapl_core_sum_uj=962972273
rapl_psys_sum_uj=4545448953
pid=0 energy=2146574943495 alive=1 kernel=1 cpu_ns=202584057566 mem=4823293952 instructions=280730931133 wakeups=713029 diski=1107748916 disko=1568890880 rx=27495 tx=2858 comm=*system*
pid=3586 energy=148310882419435 alive=1 kernel=0 cpu_ns=29661922982946 mem=176640000 instructions=253500941 wakeups=32516350 diski=246573465600 disko=0 rx=0 tx=0 comm=gunicorn
pid=3322 energy=63421765950 alive=1 kernel=0 cpu_ns=12684353190 mem=4714496 instructions=0 wakeups=0 diski=0 disko=0 rx=0 tx=0 comm=nginx
pid=50 energy=515245300 alive=0 kernel=1 cpu_ns=103047771 mem=0 instructions=1289 wakeups=0 diski=0 disko=0 rx=0 tx=0 comm=kworker/10:0
didiafedora: 5
```

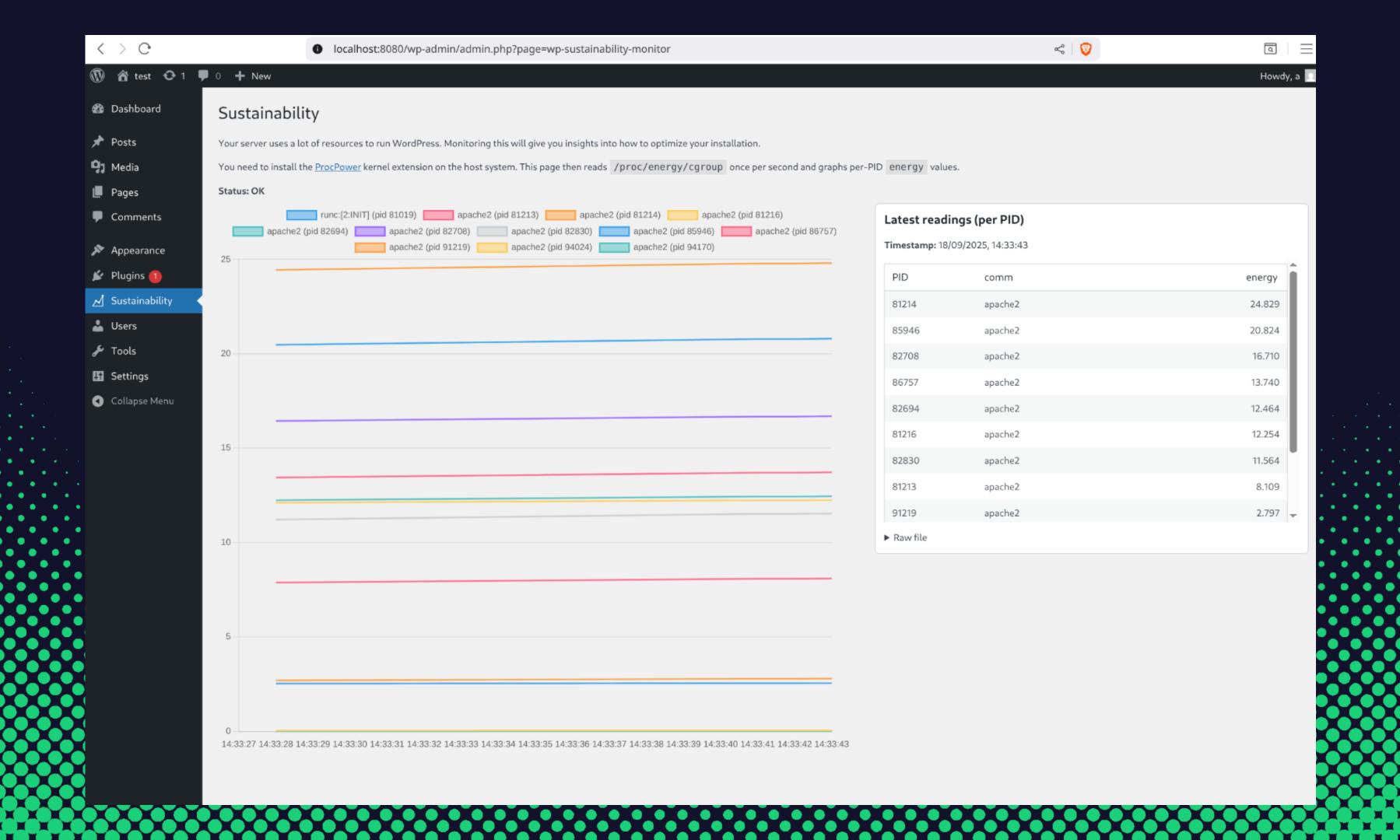
```
didi@fedora:~$ cat /proc/energy/cgroup
  pid=5483 energy=2102001536990 alive=1 kernel=0 cpu_ns=420298267237 mem=6352896 ins
  didi@fedora:~$ sudo cat /proc/energy/all | head -n 10
  timestamp=908562889618
  iterations=7818
  sample_ns=100000000
  window_ns=1000000000
rapl_core_sum_uj=962972273
rapl_psys_sum_uj=4545448953
pid=0 energy=2416574943495 alive=1 kernel=1 cpu_ns=202584057566 mem=4823293952 ins
pid=3586 energy=148310882419435 alive=1 kernel=0 cpu_ns=29661922982946 mem=1766400
pid=3322 energy=63421765950 alive=1 kernel=0 cpu_ns=12684353190 mem=4714496 instru
pid=50 energy=515245300 alive=0 kernel=1 cpu_ns=103047771 mem=0 instructions=1289
didi@fedora:~$
```

```
didi@fedora:~$ cat /proc/energy/cgroup
  pid=5483 energy=2102001536990 alive=1 kernel=0 cpu_ns=420298267237 mem=6352896 ins
  didi@fedora:~$ sudo cat /proc/energy/all | head -n 10
  timestamp=908562889618
  iterations=7818
  sample_ns=100000000
  window_ns=1000000000
rapl_core_sum_uj=962972273
rapl_psys_sum_uj=4545448953
pid=0 energy=2416574943495 alive=1 kernel=1 cpu_ns=202584057566 mem=4823293952 ins
pid=3586 energy=1483108 _____live=1 kernel=0 cpu_ns=29661922982946 mem=1766400
pid=3322 energy=634217 5950 alive=1 kernel=0 cpu_ns=12684353190 mem=4714496 instru
pid=50 energy=51524530 alive=0 ernel=1 cpu_ns=103047771 mem=0 instructions=1289
didi@fedora:~$
```

More integrations

Try to get it into some programs


Model DB


Build a database of machines with model data so that calibration is not needed all the time

More metrics

What is X doing?
What is the graphics card doing?
How about unknown hardware?

Next steps

Django administration


Home

Sustainability

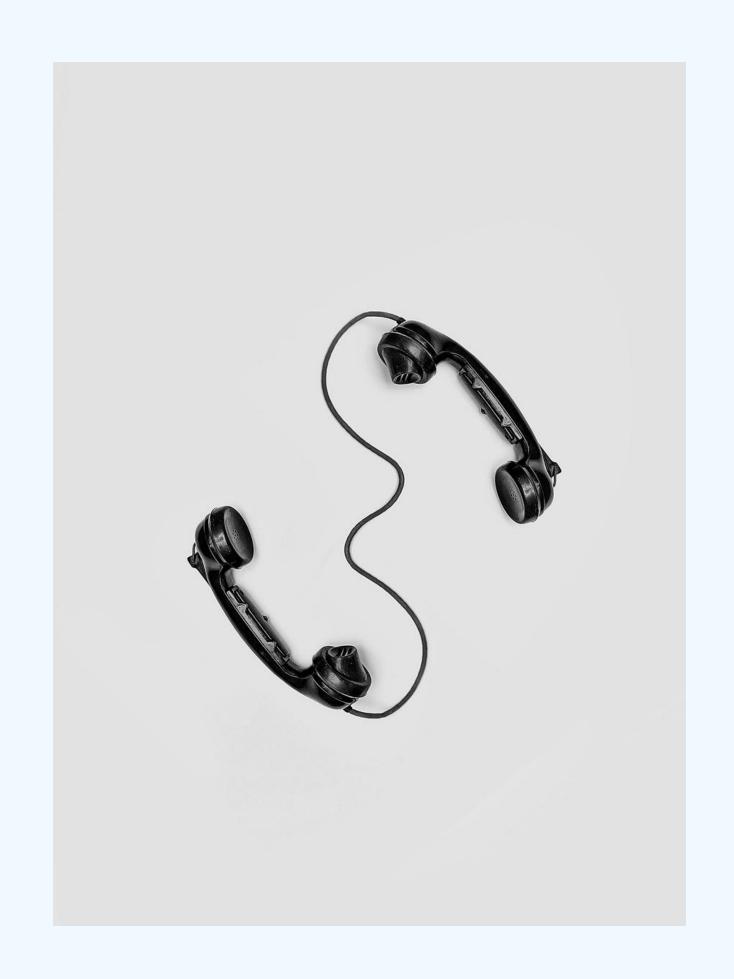
Your server uses resources to run Django & your site. Monitoring helps optimize your installation.

You need the ProcPower kernel extension on the host system. This page reads /proc/energy/cgroup once per second and graphs per-PID energy values.

Status: OK

Latest readings (per PID) Timestamp: 29/09/2025, 16:50:41 PID COMM ENERGY 714285 python 0.900 714284 python 0.570 714232 runc:[2:INIT] 0.057 ▼ Raw file pid=714232 energy=204649818420 alive=1 kernel=0 cpu_ns=16858900278 mem=pid=714284 energy=2050654073810 alive=1 kernel=0 cpu_ns=396980355866 mepid=714285 energy=3238467357255 alive=1 kernel=0 cpu_ns=638356645378 me

Thank you


Green Screen
Catalyst Fund

Prototype Fund

Green Coding Solutions

QUESTIONS?

Email:

• didi@green-coding.io

Urls:

- https://github.com/green-kernel
- https://www.green-coding.io/