

Empowering Devs to Act:
Bringing Environmental
Metrics into Infrastructure
Decisions

Elise Auvray - Product Manager Environmental Footprint a Scaleway

November 13th 2025

A Big, Open & efficient European provider of cloud & Al

+100 Products To Help Your Business Embrace **Cloud Services**

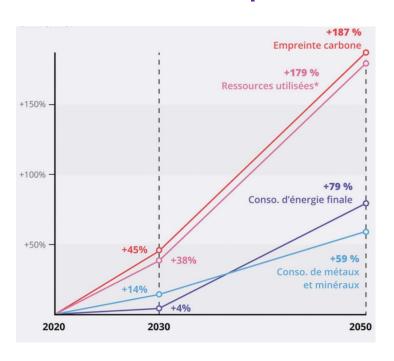
Secure, Reliable & **Resilient** Data Centers For All Your Data

European Leader & Enabler Of Data Sovereignty

Sustainable: Low Carbon Powered, Hardware Reconditioned **Full Impact Measured**

Why measure the impact of the Cloud?

Digital and Al: a growing industry with increasingly significant environmental impacts

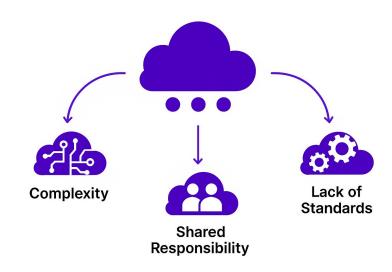

- → The digital sector represents 4% of global greenhouse gas emissions
- → Global electricity consumption in data centers represents approximately
 1.5% of global electricity demand with a growth rate of 13% per year since 2019.

Artificial intelligence further increases the impact of cloud computing

→ If current trends continue, territorial emissions from French data centers would reach 1.5 MtCOe in 2030, an increase of 67% compared to 2020.

Source: Shift project final report (2025)

Digital and Al: a growing industry with increasingly significant environmental impacts



- → If nothing is done, by 2050
 - the carbon footprint could **triple**
 - energy consumption could double
 - resources used could almost quadruple

Source: ADEME - ARCEP 2023 - "Analyse prospective de l'empreinte environnementale du numérique en France aux horizons 2030 et 2050."

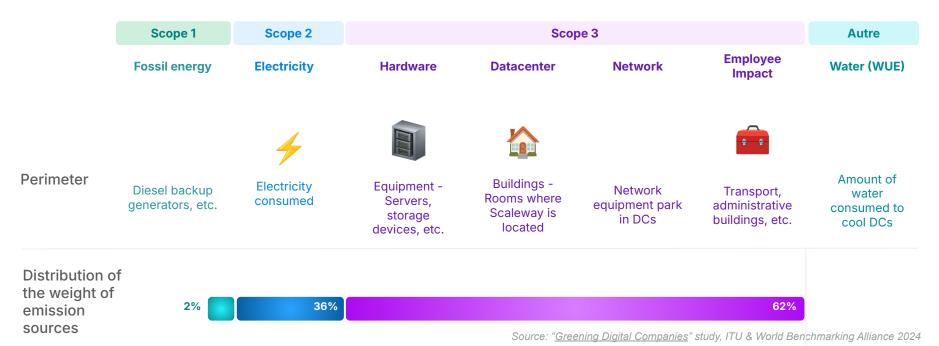
Pourquoi c'est si difficile de mesurer l'impact du cloud?

- → Le cloud semble "immatériel"... mais il repose sur une chaîne physique complexe
- → Il n'existe pas de méthodologie standard utilisé par tous les Cloud providers
- → Données parfois absentes, incohérentes, fermées ou non standardisées

Our goal

Provide accurate and comprehensive assessments of the environmental footprint of cloud and bare metal services,

ensuring customers have easy access to and understanding of data to measure, report, and reduce their cloud-related emissions.

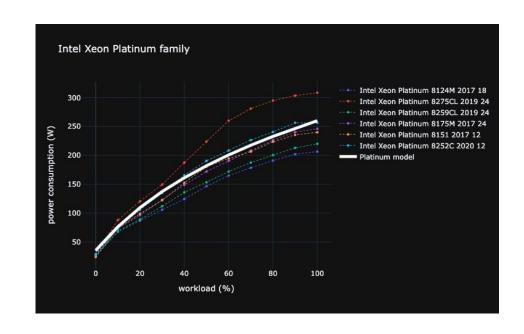

Transparency

- Based on PCR (LCA) methodology
- including the impact at all stages of our service lifecycle and the impact related to actual use by service users

Education and Support

Help our users understand, control, and reduce
 their impact

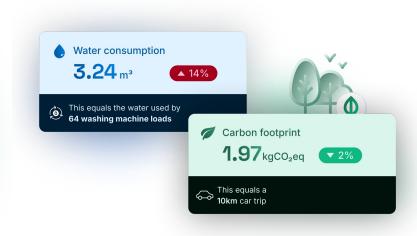
Our methodological and technical choices



Empowering Devs to Act: Bringing Environmental Metrics into Infrastructure Decisions

Our methodological and technical choices

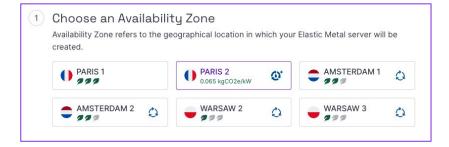
Data based on actual usage


- → We use CPU utilization to determine a virtual machine's power consumption.
- → A CPU's power consumption relative to its utilization is not linear.
- → We base this on data calculated by Boavizta.

Concretely, what does that look like?

Estimate data . . . Select a server PARIS 1 0.082 kgCO2e/kW EM-B320E-NVME €149.99/month €149.99/month 28.051 kgCO2e/month

Monthly reports



Concretely, what does that look like?

User API with daily row data (json format)

```
zones":
   "zone": "fr-par-2",
   "total_zone_impact": {
     "kg_co2_equivalent": 3.633786,
     "m3_water_usage": 0.003593
  },
   "skus":
       "sku": "/storage/block/volume-low-latency-5k/fr-par-2",
       "total_sku_impact": {
         "kg_co2_equivalent": 3.633786,
         "m3_water_usage": 0.003593
       },
       "service_category": "storage",
       "product category": "block storage"
```

What we learned

Take environmental impact data into account when choosing infrastructure:

At the availability zone level, for example:

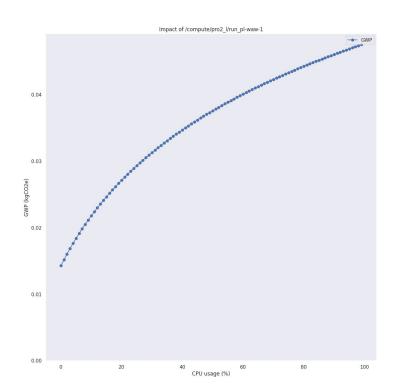
What we learned

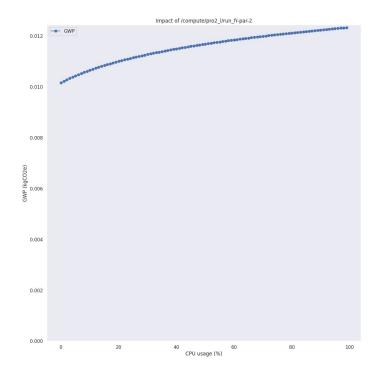
At	the	pro	od	u	ct	le	9V	el	•
				_	_	_	_	_	

PRO2-S on Paris-2: 0,00645 kgCo2e/hour EM-A115X-SSD on Paris-2: 0,015 kgCo2e/hour

x 2,5

Name	Price (excl. tax.)	CPU(s)	Memory	Disk(s)	Bandwidth ①
EM-A115X-SSD 0.015 kgCO2e/hour	€0.091/hour	1x Intel Xeon E3 1220 or equivalent 4C/4T 3.1 GHz	32 GB	2 × 1.02 TB SSD	500 Mbps (to 1 Gbps*) public 1 Gbps private

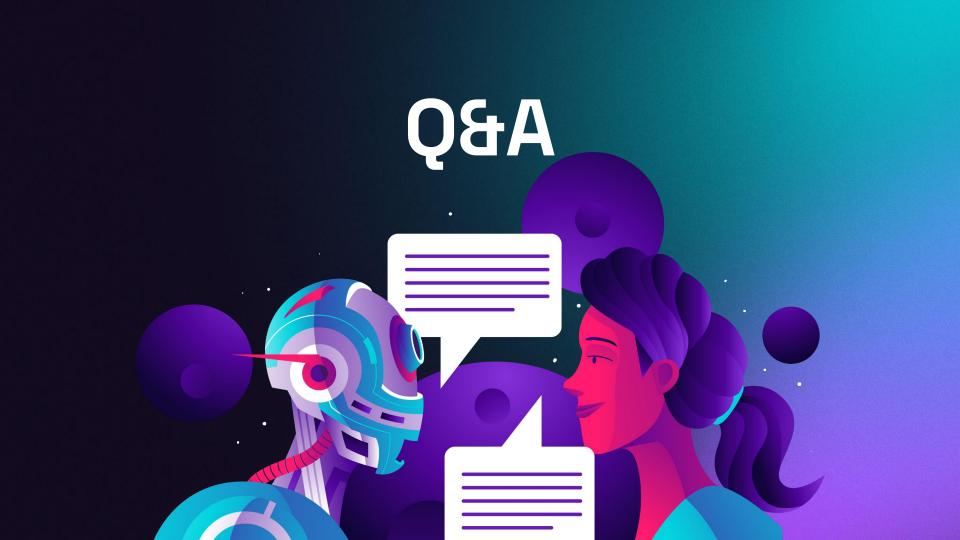



At the resource level:

EM-A115X-SSD on Paris-2: 0,015 kgCo2e/hour EM-I215E-NVME on Paris-2: 0,05 kgCo2e/hour

x 3,5

What we learned



Why is this important?

- → **Reduce** long-term operational costs
- → Positioning yourselves as a leader in markets where sustainability is becoming a key differentiator.
- → An opportunity to build responsible digital technology with a sustainable future.

What indicators can you integrate today to make your infrastructure more sustainable?

