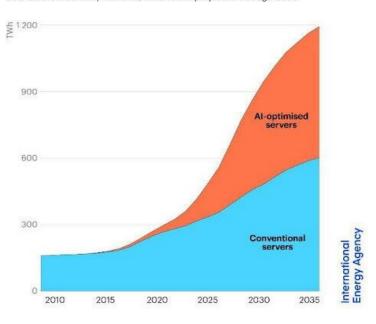
Paint It Green!

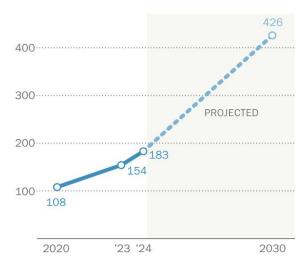
How Open Source Helps Reduce the Environmental Impact of Al

Danijel Soldo

Solution Architect @ Red Hat


danijel@redhat.com

Impact #1: Electricity / Carbon emissions


Data centre electricity demand is set to surge in the next decade, driven by AI

Data centre electricity demand, historical & projected through 2035

Electricity consumption at U.S. data centers is expected to more than double by 2030

Total electricity consumption by U.S. data centers (terawatt-hours)

Note: 2030 projection is based on IEA's "base case" scenario, which assumes current industry forecasts and regulatory conditions persist.

Source: International Energy Agency, "Energy and AI," April 2025.

lmpact #2: Water

Infrastructure > Data Centres

Google data centre soaks up a third of Oregon city's water supply

News

By Bobby Hellard published December 22, 2022

The tech giant has been labelled a "water vampire" after its facility increased water consumption every year since opening for the purposes of cooling

A single data center can consume up to 5 million gallons of drinking water a day, enough to supply thousands of households or farms.

https://utulsa.edu/news/data-centers-draining-resources-in-water-stressed-communities/

"A single 100-word email generated by ChatGPT costs 3 bottles of water."

IEEE Spectrum Generative AI Has a Massive E-Waste Problem

Q Type to search

NEWS A

Generative AI Has a Massive E-Waste Problem > Rapid growth could result in an annual e-waste stream of 2.5 million tonnes by 2030

BY KATHERINE BOURZAC | 94 NOV 2024 | 3 MIN READ | \square Katherine Bourzac is a freelance journalist based in San Francisco, Calif.

Cut it ...

And let's get to action!

It's now estimated that 80–90% of computing power for AI is used for **inference**.

MIT Technology Review

Open Source Projects

for more efficient Al Inferencing

Easy, fast, and cheap LLM serving for everyone

Top Open Source Projects by contributors

Rank	Repository	Short description
1	vllm-project/vllm	High-throughput LLM inference engine
2	microsoft/vscode	Widely used open source code editor
3	<u>openai/codex</u>	Lightweight coding agent that runs in the terminal
4	huggingface/transformers	Core library for model loading & fine-tuning
5	godotengine/godot	Game engine for 2D/3D development

About vLLM

The de-facto standard in open source model serving

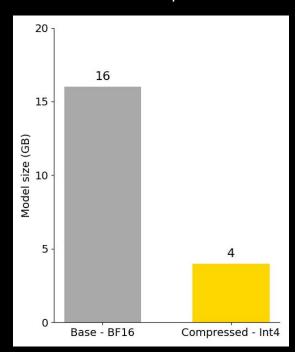
Fast and easy to use open source inference server

About vLLM

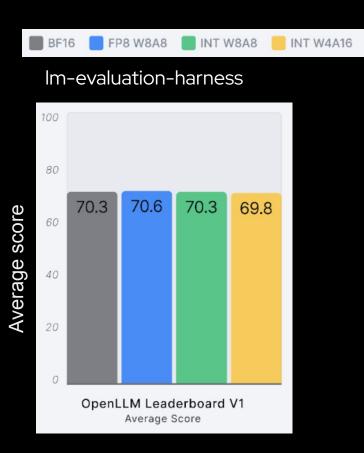
The de-facto standard in open source model serving

Optimizations!

- Paged Attention
- Advanced KV-Cache
- Prefix caching
- Spec Decode
- Chunked Pre-fill
- Multi-LoRA
- Quantization
- Distributed Inference



Quantization aims to reduce the precision of a model's weights from high to low precision formats (e.g. FP32 to INT8 / FP8) without dropping model quality.



LLM Compressor

INT W4A16

Model size

Model size

Base - BF16

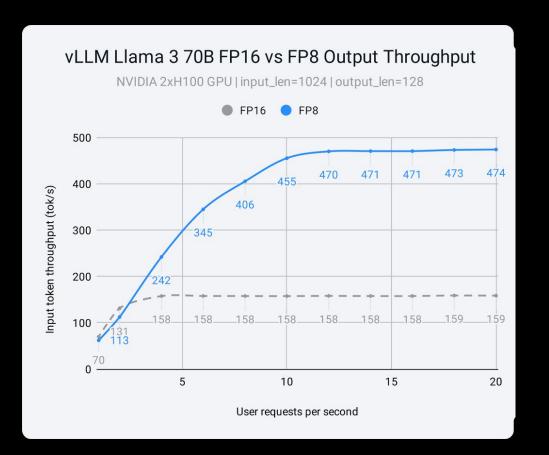
LLM Compressor

4

Compressed - Int4

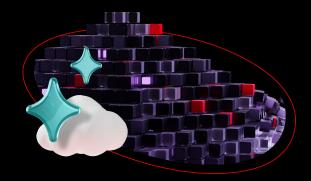
20 7

15


Model size (GB)

16

Accuracy


Quantization enables more tokens for fixed hardware

Get Started with Quantization in vLLM

Validated models by Red Hat Al

LLM Compressor

→ <u>red.ht/optimized-models</u>

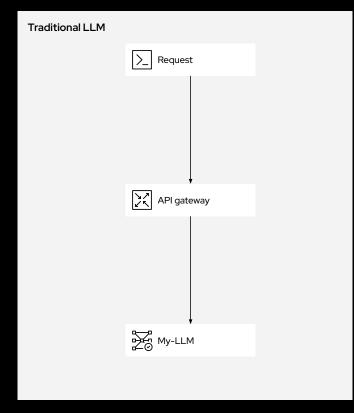
· <u>red.ht/llm-compressor</u>

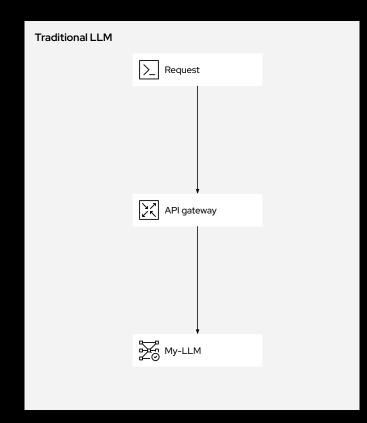


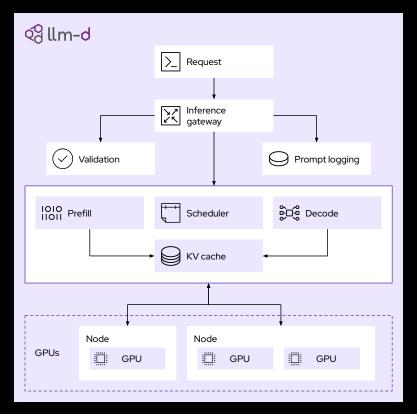
LLM Compressor

easy-to-use library for optimizing models for deployment with vLLM

LLM Compressor

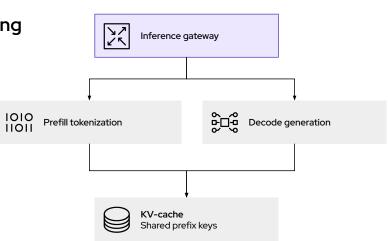


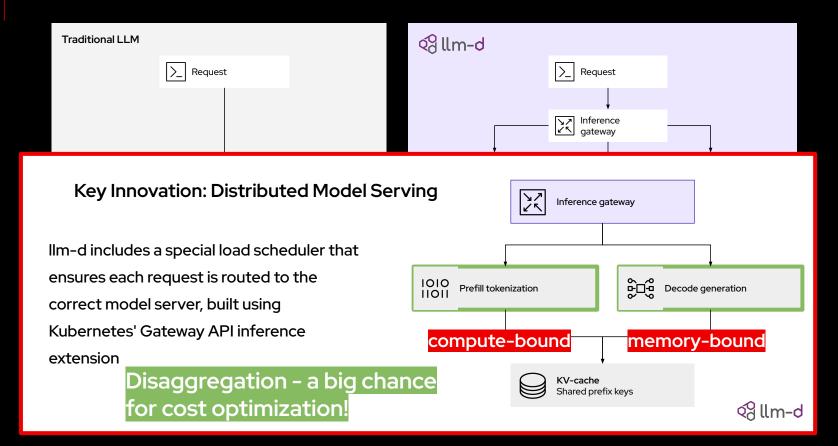

 For practitioners: off-the-shelf validated model for use with vLLM



- For developers: easy to use recipes with heavily optimized default configurations for all quantization formats supported in vLLM
- For researchers: fine-grained control over model quantization (per-channel, per-tensor, per-group), symmetric/asymmetric, with or without calibration data, activation reordering, dynamic/static activation quantization, etc.

#3 Ilm-d

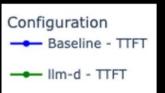

From Black Box to First-Class Citizen

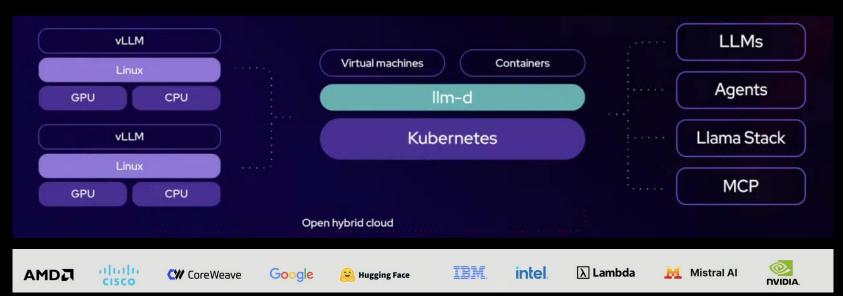


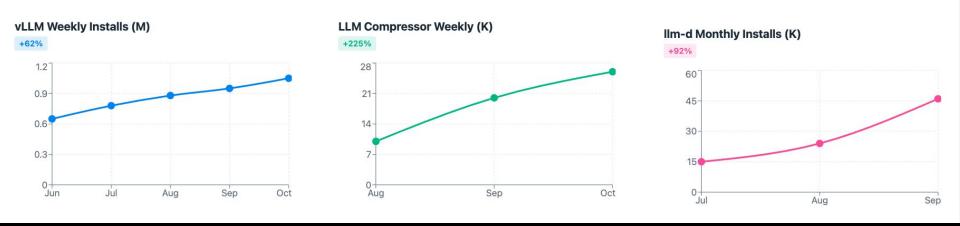
Traditional LLM Request Inference gateway

Key Innovation: Distributed Model Serving

Ilm-d includes a special load scheduler that ensures each request is routed to the correct model server, built using Kubernetes' Gateway API inference extension




Llm-d performance



A Kubernetes-native, high-performance distributed LLM Inference framework

The momentum is real

#4 Kepler

Kubernetes Efficient Power Level Exporter

Project Kepler - in a nutshell

- CNCF Sandbox Project
- Prometheus exporter for energy metrics
- Multi-level attribution:

Node \rightarrow Pod \rightarrow Container \rightarrow VM \rightarrow Process

- Hardware sensor-based (Intel RAPL, Redfish ...)
- Kepler Operator available

Kepler Major Rewrite in: v0.10.0

faster, safer, and cleaner

- Enhanced Performance & Accuracy
 - Dynamic RAPL zone detection:
 - Smarter power attribution
 - Better environment detection
 - Lean & efficient: Uses far fewer resources than the old Kepler version.

- Reduced Security Requirements
 - Read-only access only: Needs access to /proc and /sys, nothing else.
 - No privileged capabilities
 - Much safer footprint
- Modernized architecture & Service-oriented design

Current limitations:

- Only bare-metal, GPU & platform to come
- Only RAPL/powercap framework

Wrap Up: Resources

- https://qithub.com/vllm-project/vllm
- https://github.com/vllm-project/llm-compressor
- https://github.com/llm-d/llm-d/llm-d
- https://github.com/sustainable-computing-io/kepler

Open Source

Open for

Community
Collaboration
Action!

Thank You.

Danijel Soldo danijel@redhat.com

