

It’s Christmas 2024…

Let’s revisit a lesson from LFC 131.
Was it correct and complete?

5
Ghz

5
Ghz Idle

Idle Idle Idle

5
Ghz

5
Ghz

5
Ghz

5
Ghz

5
Ghz

5
Ghz

3.2
Ghz

3.6
Ghz

3.4
Ghz

3.0
Ghz

3.4
Ghz

3.2
Ghz

Dynamic Voltage and
Frequency Scaling

1.15 V 1.25 V 1.20 V

1.10 V 1.20 V 1.15 V

Dynamic Voltage and
Frequency ScalingCPU Package

(example
25 watts)

1.12
mWh

1.26
mWh

1.19
mWh

1.05
mWh

1.19
mWh

1.12
mWh

CPU Package
(example
25 watts)

Over 1 second

Designing for Flow,
Not Just Execution

Synchronous / Blocking
Tasks queue up the CPU waits between operations

Looks simple, but causes idle energy draw and lower throughput

Asynchronous / Flow-Oriented
Tasks overlap and share resources efficiently

Keeps systems active, responsive, and energy-smart

Underutilization

Poor Design Choices

Energy Waste + Cost + Latency

Built to Last

Your software can run
100% on renewables

and still be
unsustainable.

 You’re already
greener than you think.

• Running on renewable grids
• Optimizing for performance & cost
• Writing efficient code
• Automating scaling & provisioning
• Reducing idle compute

But sustainability starts
where efficiency ends.

Green Design vs
Sustainable Design

Does this
line of code, this build,

or this instance
create lasting value,
or just more activity?

Meet ParallelQuickSort

≈ 140–160 million uOps

VS

≈ 120–160 million uOps

So, it performs roughly the same
total work as your ParallelQuickSort,
but it’s usually faster in wall time.

VS

VS

VS

VS

UNDERUTILIZATION

 3–5 uOps per await
 Full hardware concurrency
 ≈ 0.0004 mWh / 100 k ops

 ~40 uOps per await
 ≈ 0.0015 mWh / 100 k ops

 Interpreter & IPC cost
dominate energy.

Rust’s async is hard
because you must
manage who owns
what, instead of the
system doing it for you.

But does this make
developers avoid

async development?

The unseen
Most of the energy waste in
software doesn’t happen in

algorithms, it happens in
how systems idle, talk,

and scale.

Why do we design
systems to be

always on?

What are
we afraid will happen

if they rest?

Let’s take this example VM
Running at 30% utilization

~180 W system draw,
including PUE.

0.18 kWh per hour

Let’s take this example VM
Running at 30% utilization

~180 W system draw,
including PUE.

4.32 kWh per day

Let’s take this example VM
Running at 30% utilization

~180 W system draw,
including PUE.

≈ 131 kWh per month

Let’s take this example VM
Running at 30% utilization

~180 W system draw,
including PUE.

≈ 1576 kWh per year

Let’s take this example VM
Running at 75% utilization

~270 W system draw,
including PUE.

≈ 2365 kWh per year

1000 VMs
Running at 75% utilization

~270 W system draw,
including PUE.

≈ 2,365,200 kWh per year

1000 VMs
Running at 75% utilization

~270 W system draw,
220 g CO₂e / kWh (location-based method)

520 metric tons CO₂e per year

15000 VMs
Running at 75% utilization

~270 W system draw,
220 g CO₂e / kWh (location-based method)

7.8 kilotons CO₂e per year

41,600,000,000,000,000 grams CO₂e
global CO₂ emissions per year (IPCC/Global Carbon Project)

520,300,000 grams CO₂e

41,600,000,000,000,000 grams CO₂e

220 g CO₂e/kWh
2023 CBS

1,886,098,000,000 grams CO₂e
Scope 3 Bechtle AG emissions in 2024

22,804,000,000 grams CO₂e
Scope 1 & 2 Bechtle AG emissions in 2024

1000 virtual example servers (220g co2e / kWh)

global CO₂ emissions per year (IPCC/Global Carbon Project)

15,801 employees

ARCHITECTURE
Sustainability begins with

how we think, plan, and build.

4 Context Environments

 Cloud On-Prem Traveling @Home

So, everything
serverless?

Value as the Bedrock

Graceful Degradation and
Peak Load Mitigation

METRICS
Measuring What Matters

Core Philosophy
Energy and CO₂ are the

truth check, not the target.

Everyone expect me now
to go to energy and co2e and

Software Carbon Intensity.
Right?

Every efficient system starts
with a hypothesis.

If we improve X, we should see
lower waste at Y. Metrics exist

to confirm that hypothesis.

Development

Docker Build
(Code + Image)

Test

Docker Image
CI/CD Tests

Acceptance

Argo CD Deploy
to Acceptance

Production

Argo CD Sync
to Prod Cluster

Detect
Underutilization

Bottlenecks
Waiting Patterns

Validate
Reduction in
kWh and Co2

From Detection → Measured Impact

Code
Changes IaC Changes

Architecture
Repository
Updated

Less
Energy & Co2
In Production

The DevOps++ pillars

MODELS
Rethinking Energy in Code

Let’s design with awareness,
knowing how many

VMs, containers, and
instances are running

somewhere on hardware.

Let’s design with awareness,
how many tokens did it take

to push that PR?

Design is decision-making

Theoretical model of
@ 1 Ghz, 1 Hz == 1 uOps,

@ 1 Ghz @ 1 core == 1.2 Volt.
And respect Dynamic Voltage and

Frequency Scaling

Last remark
Sustainability should be

achievable for every
developer, not just those

on clean grids.

Closing & Q&A
When code, people, and

purpose align, technology
becomes sustainable by

nature.

© 2024 HighTech Innovators. All rights reserved. 69

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Dia 31
	Dia 32
	Dia 33
	Dia 34
	Dia 35
	Dia 36
	Dia 37
	Dia 38
	Dia 39
	Dia 40
	Dia 41
	Dia 42
	Dia 43
	Dia 44
	Dia 45
	Dia 46
	Dia 47
	Dia 48
	Dia 49
	Dia 50
	Dia 51
	Dia 52
	Dia 53
	Dia 54
	Dia 55
	Dia 56
	Dia 57
	Dia 58
	Dia 59
	Dia 60
	Dia 61
	Dia 62
	Dia 63
	Dia 64
	Dia 65
	Dia 66
	Dia 67
	Dia 68
	Dia 69

